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A Fast Distributed Algorithm for Coupled Utility
Maximization Problem with Application for Power

Control in Wireless Sensor Networks
Shengbin Liao

Abstract: This paper investigates a method to distributively solve a
Network Utility Maximization (NUM) problem with coupled vari-
ables and applies it to study power control in wireless sensor net-
works (WSNs). We present a dual decomposition-based consis-
tency price algorithm to solve the coupled problem. However, the
consistency price algorithm suffers from slow convergence. We
then propose a two-step method to address the given issue. The
first step is to build up a global consensus problem by introduc-
ing slack variables to transform the NUM problem with globally
coupled variables into a NUM problem with coupled constraints.
The second step is to design a distributed algorithm that combines
the first-order gradient/subgradient method and a local consensus
algorithm to solve the global consensus problem. The proposed al-
gorithm is a primary algorithm which has faster convergence speed
than the consistency price algorithm which is a primary-dual algo-
rithm. Experimental results have demonstrated the effectiveness of
our proposed approach.

Index Terms: Consensus algorithm, network utility maximization,
power control, primary-dual algorithm, wireless sensor networks.

I. INTRODUCTION

SINCE the publication of the seminal paper [1] by Kelly et
al., the framework of network utility maximizaiton (NUM)

has attracted a lot of attention. Many important network design
and resource allocation problems can be formulated as a NUM
model. The utility concept, originally proposed in economics, is
used to measure the satisfaction degree of a consumer for a good
or service. In the basic NUM model, the utility of a network user
is defined as a function of the data rate. The goal of network
system is designed to maximize the overall utility of all the users
in the network.

Consider a communication network with L links, each with a
fixed capacity of cl bps. Let a route r be a non-empty subset of
L, and R be the set of possible routes. Set Alr = 1 if l ∈ r, so
that the link l lies on route r, and set Alr = 0 otherwise. This
defines a 0-1 routing matrix A = (Alr, l ∈ L, r ∈ R).

Associate a route r with a user (or a data source), and suppose
that if a rate xr is allocated to user r then this has utility Ur(xr)
to the user. Assume that the utility Ur(xr) is increasing, strictly
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concave and continuously differentiable over the range xr ≥ 0.
Let U = (Ur(xr), r ∈ R) and C = (cl, l ∈ L). Under this
model the network seeks a rate allocation x = (xr, r ∈ R)
which solves the following optimization problem [2].

maxx

∑
r∈R

Ur(xr)

subject to Ax ≤ C
x ≥ 0

(1)

In the basic NUM model (1), the utility Ur(xr) of a network
user r is defined as function of its data rate xr, this means that all
utility functions are separable. Due to the characteristic of sep-
arability of utility functions, a basic distributed NUM algorithm
is derived to maximize aggregate user utility by the dual decom-
position theory [3]. Along this way, so many extended NUM
models and resultant distributed algorithms have been proposed
for network architectural decisions, cross-layer optimization and
resource allocation in wireless as well as wireline networks [4]-
[10].

However, the conventional methods for designing distributed
NUM algorithms do not work when utility functions are globally
coupled. In this case the utility of a network user r not only
depends on its own data rate xr (or the allocated resource) but
also on the rates (xs, s 6= r, s ∈ R) of other users. Associated
with the allocated network resource x = (xr, r ∈ R), each user
r obtains a utility Ur(x), where xr is the allocated rate for user
r and Ur(x) is its utility function. By maximizing the aggregate
utility functions under the resource constraints, we can establish
the corresponding NUM model as follows.

maxx

∑
r∈R

Ur(x)

subject to Ax ≤ C
x ≥ 0

(2)

Some important network design and resource allocation prob-
lems, such as power control in wireless sensor networks (WSNs)
[11] and spectrum management for digital subscriber lines [12],
can be formulated as model (2). Model (2) is a globally cou-
pled NUM problem because the utility function of each user not
only depends on the allocated resource but also on the resources
obtained by other users. In classical NUM model (1), the util-
ity function is usually defined as Us(xs) for user s, which only
depends on local variable xs. The globally coupling feature in
model (2) makes it difficult to find the globally optimal resource
allocation in a distributed setting.

The common methods to address the coupled NUM model
(2) are Lagrangian duality theory and game theory. Based on
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Lagrangian duality theory, distributed power control schemes
were developed in [13] and [14] for some special cases of the
model (2). However, these works suffer from the slow conver-
gence speed. There are some works which have investigated the
problem by using game theory [17], [18]. These works usually
introduce a “weighted parameter”, which can be interpreted as
“power price”. The aglorithms developped in these works are
either centralized or they also suffer slow convergence speed
because of the update of the dual variables(or power prices).
Our approach differs in that: 1) We focus on developping a dis-
tributed algorithm which uses the primary variables instead of
dual variables. 2) our algorithm combines the first-order gradi-
ent method and the local consensus algorithm. 3) the users in
our method cooperate with their neighbors by exchanging the
information of the primary variables instead of the information
of the dual variables such as “power prices”.

In this paper, we present a two-step method to address the
given issue (2). The first step is to build up a global con-
sensus problem [19] by introducing slack variables to trans-
form the NUM problem with globally coupled variables into a
NUM problem with coupled constraints. The global consensus
problem can be distributively solved by the consistency price
approach [20]. The consistency price approach is a kind of
primary-dual algorithms and also suffers from the slow rate of
convergence [21], [22].

The second step is to design a distributed algorithm that com-
bines the first-order gradient/subgradient method and the local
consensus algorithm [23] to solve the global consensus prob-
lem. Our proposed algorithm is a primary algorithm which
has faster convergence speed compared with the conventional
primary-dual algorithm.

In this paper, we apply our proposed algorithm to study
power control in WSNs. Optimizing the performance of WSNs
(i.e., maximizing the overall utility) is global coupling be-
tween the mutual interference of wireless channels. In typical
wireless sensor network applications, sensor nodes are energy-
constrained and are randomly distributed in a certain region
without control center. Therefore, distributively solving the cou-
pled power control problem for WSNs are very important. Our
main contribution is that we present a mixed method to address
the given issue effectively.

The outline of this paper is as follows. We first discuss the
background and related work in Section II, then present the
primary-dual algorithm for solving a global consensus problem
in Section III. In Section IV, we apply the first-order method
and local consensus to obtain a distributed primary algorithm. In
Section V, we apply the proposed algorithm to study the power
control in WSNs and provide experimental results. Finally, Sec-
tion VI concludes this paper.

II. BACKGROUND AND RELATED WORK

Before we present our idea, we first introduce a basic dis-
tributed optimization algorithm [2] which solves the model (1).
The consistency price approach presented in the next section be-
longs to extensions of this work.

A. Basic Primary-dual Algorithm

Low et al. present in [2] the following basic distributed opti-
mization algorithm for solving the model (1).

The Lagrangian dual function for problem (1) is

D(µ) = max
xr≥0

{ ∑
r∈R

Ur(xr)− µT (Ax− C)
}

= max
xr≥0

{ ∑
r∈R

(Ur(xr)− xr
∑
l∈L

Alrµl)
}

+ µTC

=
∑
r∈R

{
max
xr≥0

(Ur(xr)− xr
∑
l∈L

Alrµl)
}

+ µTC,

(3)
where µ = (µl, l ∈ L) is a vector of lagrange multipliers. Here,
the second equality follows due to the definition of the matrix
A. Thus, the dual problem for primal problem (1) is

min
µ≥0

D(µ). (4)

In the dual formulation, Lagrange multiplier µl can be inter-
preted as congestion price on link l. A key observation from
equation (3) is that sources can compute their optimal rate indi-
vidually, based on the total congestion price

∑
l∈LAlrµl, using

the following source rate algorithm

xr = arg max
xr≥0

{ ∑
r∈R

Ur(xr)− xr
∑
l∈L

Alrµl

}
. (5)

To solve the dual problem (4), one can use the following pro-
jected gradient method

µl(t+ 1) =
[
µl(t)− α(t)(cl −

∑
r∈R

Alrxr)
]+
, (6)

where α(t) is a positive scalar stepsize, and [a]
+ denotes the

projection of a onto the set of non-negative real numbers.
According to the duality theory [24] and the assumption that

the utility Ur(xr) is increasing, strictly concave and continu-
ously differentiable over the range xr ≥ 0, the optimal solu-
tions to both primal problem (1) and dual problem (4) can be
found simultaneously by solving iteratively in equation (5) and
(6), respectively. This suggests treating the network links and
the sources as processors in a distributed computation system to
solve the primary problem (1) and the dual problem (4). The
algorithm (5)–(6) is often referred to as the basic primary-dual
algorithm. The algorithm (5)–(6) is a distributed primary-dual
algorithm. Here the word “distributed” means that the algorithm
relies only on local information exchange between nodes. A
large number of studies based on NUM framework belong to
extensions of the basic primary-dual algorithm which has been
developed into a mathematical theory of network architectures,
interested readers along this line please refer to [25].

B. Related Work

Many research studies have been carried out on the topic of
NUM framework [26]. A number of modified and generalized
NUM models and distributed algorithms have been proposed in
the past two decades [4]–[10]. Most of previous work defined
the utility of a network user as a function of its transmission
rate, this means that the objective functions of the model are
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separable. However, we study NUM with coupled utility func-
tions. Defining different utility functions naturally lead to dif-
ferent NUM frameworks, there exist some challenges to define
utility functions, the relationship between utility functions and
performance metrics is presented in [28]–[29].

There are some studies which have also investigated the cou-
pled NUM issues. Ruilong et al. [30] considered NUM prob-
lem with coupled constraints. In contrast, we considered NUM
problem with coupled utilities. Cendrillon et al. [31] constructed
a dynamic spectrum management model, which is a special
case of NUM with coupled variables. They used the weighted
sum method to decouple the model, i.e., each user optimizes
the weighted sum of the achievable rates on its own and other
users. Shan et al. [32] presented a adaptive transmission power
control algorithm in WSNs, in which each node builds a model
for each of its neighbors, describing the correlation between
transmission power and link quality. Each node need employ
a feedback-based transmission power control algorithm to dy-
namically maintain individual link quality over time.

In [13]–[16], the same problem is also considered, which are
most close to our work. In [13], Lei et al. first transform the
coupled NUM into a structured max-min problem by introduc-
ing an auxiliary variable. They then use Extended duality [33]
and simulated annealing [34] to devise a distributed NUM al-
gorithm. In contrast, in this paper, we transform the coupled
NUM into a global consensus problem. Moreover, we do not
adopt randomized approaches to construct our algorithm. Their
distributed algorithm can obtain global optimality at the cost of
slow convergence due to the use of simulated annealing.

In [14], Tan et al. also transform the coupled NUM into a
global consensus problem, this is similar to ours. A signifi-
cant difference from our work is that they use the consistency
price approach, which is a kind of primary-dual algorithms, to
solve the global consensus problem. We design a mixed al-
gorithm to solve distributively the transformed problem. The
proposed algorithm combines the ideas of the first-order gradi-
ent/subgradient algorithm and the local consensus algorithm and
obtains the fast convergence rate.

Our proposed algorithm is a kind of cooperative distributed
optimization as it depends on some information exchanges be-
tween neighbour users. In [23], Nedić et al. introduce the ba-
sic idea and algorithms of cooperative distributed multi-agent
optimization. They also present a distributed algorithm which
combines the first-order gradient/subgradient algorithm and the
local consensus algorithm. They use stochastic weight matrix to
model information exchange in the local consensus algorithm,
this work also suffers from slow convergence speed. Our pro-
posed algorithm uses the deterministic weight sum approach in
the local consensus algorithm and the weight coefficients can be
determined by the number of neighbour users (including itself)
or the rates of neighbour users.

III. CONSISTENCY PRICE ALGORITHM

Here, a key idea to tackle coupled utilities is to introduce mul-
tiple slack variables and build up a global consensus problem
[19]. By introducing slack variables (yr, r ∈ R) and regarding
primary variable x as global common variable, the optimization

problem (2) is then formulated equivalently as

max{yr,x}
∑
r∈R Ur(yr)

subject to
yr = x, ∀r ∈ R
Ax ≤ C
x ≥ 0,

(7)

where yr = (yr,1, · · ·, yr,r−1, xr, yr,r+1, · · ·, yr,R), but for no-
tation simplicity, let yr = (yr,j , j ∈ R), this means yr,r = xr.

The objective functions are separable in the transformed prob-
lem (7) by adding an equality constraint. The problem can be
distributively solved by the conventional primary-dual gradi-
ent/subgradient algorithm which is similar to the basic primary-
dual algorithm. We write down the Lagrangian associated with
problem (7) as follows,

L(yr,x;µ, λr) =
∑
r∈R

(Ur(xr) + λr
T (yr − x))

+ µT (C −Ax)

=
∑
r∈R

(Ur(yr) + λr
Tyr

− xr
∑
i∈R

λir − xr
∑
l∈L

Alrµl) + µTC,

where µ = (µl, l ∈ L) and λr = (λrj , j ∈ R) are lagrange
multiplier vectors which are respectively associated with the in-
equality and equality constraints in model (7). From the above
expression, the Lagrangian can be separated into many subprob-
lems, where each subproblem uses only local variables, i.e., the
rth subproblem uses only variables with the first subscript index
r. The dual function is given by

D(µ, λr) = max
{yr,x}

L(yr,x;µ, λr)

= max
{yr,x}

∑
r∈R

(Ur(yr) + λr
Tyr − xr

∑
i∈R

λir

− xr
∑
l∈L

Alrµl),

where the second equality follows since the item µTC in the
Lagrangian does not depend on variables yr and x. Thus, the
dual problem for model (7) is given by

min
µ≥0,λr≥0

D(µ, λr). (8)

Since the Lagrangian is separable, this maximization of La-
grangian over (yr,x) can be conducted in parallel at each
source r as follows,

max{yr,x} Ur(yr) + λr
Tyr − xr

∑
i∈R

λir − xr
∑
l∈L

Alrµl.

(9)
While the primal problem (7) is not strictly convex in the pri-

mal variables {yr,x}, the dual function D(µ, λr) is usually
piecewise differentiable and corresponding dual problem is a
non-differentiable convex optimization problem. Hence we will
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solve the dual problem (8) using subgradient projection method
[35]. Suppose {y∗r ,x∗} is the solution of the above problem (9).
It is easy to verify that

fl = cl −
∑
l∈L

Alrx
∗
r

and
grj = y∗rj − x∗r , j ∈ R,

are the subgradient of the above dual function with respect to
the dual variables µ and λr at point (µ, λr), respectively. Thus,
the dual problem (8) can be solved by using the subgradient pro-
jection algorithm as

µl(t+ 1) =
[
µl(t)− α(t)fl

]+
, l ∈ L

and

λrj(t+ 1) =
[
λrj(t)− β(t)grj

]+
, r, j ∈ R,

where α(t) and β(t) are positive stepsizes.
We now describe the following distributed algorithm, where

each source r and each link l solve their own problems with only
local information. We can interpret µl as the price per unit rate
to use link l, and λrj as the price of the consistency deviation be-
tween the source r and j, accordingly, the algorithm is referred
to Consistency Price Algorithm: CPA.

Consistency Price Algorithm: CPA:
• Step 0: Initialize the dual variables {µ, λr}

At each iteration t
• Step 1: Each source r solves the following problem

max
{yr,x}

Ur(yr) + λr
Tyr − xr

∑
i∈R

λir − xr
∑
l∈L

Alrµl.

• Step 2: Update the subgradients of the dual function as

fl = cl −
∑
l∈L

Alrx
∗
r

and
grj = y∗rj − x∗r , j ∈ R

where {y∗r ,x∗} is the solution from Step 1.

• Step 3: Each link l updates its price as

µl(t+ 1) =
[
µl(t)− α(t)fl

]+
, l ∈ L,

where fl is from Step 2 and α(t) is the positive scalar stepsize.
• Step 4: Each source r updates its consistency price as

λrj(t+ 1) =
[
λrj(t)− β(t)grj

]+
, r, j ∈ R,

where λrj is from Step 2 and β(t) is the positive scalar stepsize.

Remark 1. In CPA, there have some feedback information
interaction. In Step 3, to update the link price, each link needs
to know the aggregate data rate of the sources that are using it.
This can be measured by the link itself. Hence, each link can
adjust its price by the local information. In Step 1, to solve the
given problem, each source needs to know the sum of the link
prices along its routing path and all of the consistency prices.
The link prices can be obtained by the notification from the links
through the presence of acknowledgment packets in TCP [36].
However, it is difficult or inefficient for each source to obtained
all of the consistency prices. This observation motivates us to
devise a more efficient algorithm.

Remark 2. Step 3 and Step 4 in CPA are to update dual vari-
ables which will be used in Step 1 in the next iteration. From the
duality theory [3], it can be seen that both the primary variables
and the dual variables tend to be optimal only when the utility
functions are concave. However, there are some applications of
NUM in which the utility functions are not concave such as mul-
tipath routing [37], [38] and lossy networks [39], [40]. In these
cases, we can use the extended Lagrange duality [41] to extend
CPA to non-concave utility functions.

IV. MIXED METHOD

In this section, we develop a completely distributed algorithm
for solving the problem (7), the algorithm will combine the first-
order subgradient method [3], [24] and a local consensus al-
gorithm [23]. For notation simplicity, here we let yr(t) denote
the estimate of user r for the resource allocation vector x(t) at
time t and assume that each user r has an initial estimate yr(0).
Then, if we ignore the equation constraints in the problem (7),
we have

max{yr,x}
∑
r∈R Ur(yr)

subject to
Ax ≤ C
x ≥ 0.

(10)

Therefore, the first-order subgradient algorithm for updating
yr in the problem (10) can be written as follows,

yr(t+ 1) = yr(t) + α(t)∂Ur(yr(t)), (11)

where α(t) > 0 is a stepsize and ∂Ur(yr(t)) is a subgradient of
the function Ur(yr) at time t. We will consider the inequality
constraint in the problem (10) later.

Apparently, algorithm (11) cannot make all network users
reach a common value for resource allocation because each user
independently updates the common resource vector and ignores
the discarded constraint. This motivated us to combine algo-
rithm (11) with a neighbour consensus algorithm which involves
each user maintaining its estimate yr(t) and updating it based
on local information from its neighbour users (including itself).
Thus, user r can update its estimates as follows,

yr(t+1) =
∑
j∈n(r)

mrjyj(t)+α(t)∂Ur(yr(t)),∀r ∈ R, (12)
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where n(r) denotes the neighbours of user r and mrj , j ∈ n(r)
are nonnegative weights that user r gives to its neighbour esti-
mates yj(t), j ∈ n(r).

Next, we consider the inequality constraint in problem (10).
We can use the idea of penalty functions to turn the constrained
problem (10) into an unconstrained problem as

max{yr≥0,x≥0}
∑
r∈R Ur(yr) + ηT (C −Ax), (13)

where η > 0 is the penalty factor. The objective function can be
rewritten as

∑
r∈R

Ur(yr) + ηT (C −Ax)

=
∑
r∈R

(Ur(yr)− xr
∑
l∈L

Alrηl) + ηTC

=
∑
r∈R

(Ur(yr)− yrr
∑
l∈L

Alrηl) + ηTC. (14)

Here, the first equality follows due to the definition of the
matrix A and the second one follows from the model (7). From
the above equation (14), we know that its subgradient over yr is

Ūr = ∂Ur(yr)− (0, · · ·,
∑
l∈L

Alrηl, · · ·, 0).

Therefore, we can revise the algorithm (12) to obtain our
mixed algorithm as follows,

yr(t+ 1) =
∑

j∈n(r)
mrjyj(t) + α(t)Ūr,∀r ∈ R. (15)

Remark 3. In our proposed algorithm (15), each user can
weight equally the information obtained from its neighbour, i.e.,
∀r,mrj = 1/|n(r)|, j ∈ n(r), here |n(r)| denotes the number
of elements of the set n(r). Each user r can also allocate differ-
ent weights mrj , j ∈ n(r) according to the neighbour numbers
of user j, j ∈ n(r), i.e., ∀r,mrj = |n(j)|∑

j∈n(r)(|n(j)|)
, j ∈ n(r).

Another approach for deciding the weights is to use the ra-
tio of the allocated resource between neighbours, this means,
∀r,mrj =

yrj∑
j∈n(r)(yrj)

, j ∈ n(r).
Remark 4. The algorithm (15) consists of two items. The

first item is the consensus part, the second item is the subgra-
dient part. The consensus part serves to drive all users to agree
on a common value about the global resource allocation, while
the subgradient part is taken by each network user to maximize
its utility function. As specified in [23], when the network is
connected to ensure the proper mixing of the network users’ es-
timates, one would expect that all users have the same estimate
after some time in algorithm (12), i.e., all network users coop-
eratively solve the problem (7) and obtain the globally optimal
resource allocation by using local information.

Remark 5. The proposed algorithm (15) also requires some
information exchanges, this is similar to the CPA. However, the
information exchange is constrained to the neighbour users.

Remark 6. The algorithm (15) is a primary algorithm [42].
There are no updates about dual variables, this is an important
difference with the CPA.

Fig. 1. Network topology.

The following theorem provides the convergence analysis of
the algorithm (15).

Theorem 1 Suppose that the utility function is concave and
the gradient of utility function is β−Lipschitz continuity, then
the limit of the sequence {yr(t), r ∈ R} produced by the algo-
rithm (15) is an optimal solution to the primary the problem (7).
Proof: [Proof] See Appendix A. 2

V. POWER CONTROL FOR WSNS

Some WSNs do not rely on a pre-existing infrastructure and
sensor nodes are randomly placed in an area. Since every sen-
sor cannot know the global information of the whole network,
if sensor nodes only work in a selfish way, this may lead to
more serious co-channel interference and significantly deteri-
orate the performance of WSNs. To mitigate interference in
WSNs, power control is one of the most-widely used basic tech-
niques [43]. In this section, we apply the proposed method and
algorithms to the power control problem for WSNs. Specially,
we justify empirically the effectiveness of the proposed algo-
rithm for power control, and compare the performance with the
consistency price algorithm and the alternating direction method
of multipliers(ADMM) [44] for power allocation problem in a
randomly generated WSNs. We consider an example of a wire-
less sensor network consisting of four users (pairs of sensor
nodes) as depicted in Fig. 1.

In Fig. 1, Ti andRi denote the transmitter and receiver of user
i, respectively, and Gsj denote the power gain from the user s
to the user j.

We assume that the transmission from user s is interfered by
other users’ concurrent transmitters, and n(T1) = {T1, T2, T3},
n(T2) = {T1, T2, T4}, n(T3) = {T1, T3}, n(T4) = {T2, T4},
respectively. We also assume that each user weights equally
the information obtained from its neighbor, i.e. ∀s,msj =
1/|n(s)|, j ∈ n(s).

Let ps denote the transmission power of node Ts with Pmax
s

being its maximum power constraint. The received signal-to-
interference-plus-noise ratio (SINR) for user s’s transmission is
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γs(p) =
Gssps∑

k 6=s
Gkspk + σs

, (16)

where σs is the receiving noise at user s and p = (p1, p2, p3, p4)
is a vector of the transmission powers of nodes T1, T2, T3 and
T4. Assume that σs = 10−4, pmax

s = 1,∀s ∈ {1, 2, 3, 4}. The
power gains Glk are equal to d−4lk , where dlk represents the dis-
tance between the transmitter of link l and the receiver of link k.
We consider a randomly generated realization of channel gains
given by the matrix G of power gain is given as

G =


0.9610 0.0108 0.0123 0.0163
0.4823 0.6830 0.0141 0.0141
0.0767 0.0084 0.0219 0.0767
0.0625 0.0625 0.1197 0.0514

 .

We consider the logarithmic utility function, i.e. for each user
s, Us(γs(p)) = log(γs(p)). Then, we can establish the global
power allocation problem as follows

maxp

∑4
s=1 Us(γs(p))
= log(γ1(p)) + log(γ2(p))
+ log(γ3(p)) + log(γ4(p))

subject to 0 ≤ p ≤ pmax

(17)

where pmax = (pmax
1 , pmax

2 , pmax
3 , Pmax

p )T , pmax
s ,∀s ∈

{1, 2, 3, 4} denotes the maximum power of user s.
As specified above, we first transform the problem (17) into

an equivalent NUM problem with coupled constraints by intro-
ducing slack variables as follows,

maxp,ys

∑4
s=1 Us(γs(ys))

= log(γ1(y1)) + log(γ2(y2))
+ log(γ3(y3)) + log(γ4(y4))

subject to
ys = p,∀s ∈ {1, 2, 3, 4}

(18)

A. Covergence Evaluation

Next, we use our proposed algorithm to solve the equivalence
problem (18). We first evaluate the convergence of the proposed
algorithm with constant stepsize α = 0.01, α = 0.005 and a
varying stepsize way for solving the problem (18). Let U(t)
and U∗(t) denote the total utility at iteration number t and the
optimal utility, respectively. Figs. 2–4 show the estimation error
or corresponding primal function residual value |U(t)− U∗(t)|
in our proposed algorithm with α = 0.01, α = 0.005 and α =
1/t, here t denotes the iteration number.

From Fig. 2 , we can see that our proposed primary algorithm
is able to approach the optimal utility very fast with an estima-
tion error less than 0.01. However, there are some oscillations
while the iterations is close to the neighbour of the primal opti-
mum. As we decrease the stepsize, we can see that shows that
the iteration curve is more smoother now from Fig. 3. Therefore,
we can decrease the oscillation by decreasing the stepsize, how-
ever, there is a trade-off: A smaller stepsize will lead to a slow
convergence speed.

We also study the impact of a varying stepsize on the con-
vergence of the proposed algorithm. Fig. 4 depicts the iteration
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Fig. 2. The error of primary function values over optimal value versus iteration
number t for the proposed algorithm with α = 0.01.
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Fig. 3. The error of primary function values over optimal value versus iteration
number t for the proposed algorithm with α = 0.005.
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Fig. 4. The error of primary function values over optimal value versus iteration
number t for the proposed algorithm α = 1/t.

curve with a varying stepsize α = 1/t. From Fig. 4, we can
know that the oscillation along the iteration curve is more big-
ger when compared with the constant stepsize.

Next, we consider another network topology by changing the
distances between all pairs of sensor nodes in Fig. 1 and gener-
ating another realization of channel gains given by the matrix G
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Fig. 5. The error of primary function values over optimal value versus iteration
number t for the proposed algorithm with α = 0.01 and ξ = 9.
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Fig. 6. The error of primary function values over optimal value versus iteration
number t for the proposed algorithm α = 1/t and ξ = 9.

of power gain is given as

G =


0.8227 0.0323 0.0020 0.0017
0.0384 0.3501 0.0095 0.0028
0.0034 0.0309 0.2256 0.0211
0.0009 0.0032 0.0132 0.1197

 .

In order to verify the convergence of our proposed algorithm
for different utility functions, we used another utility function
defined as

Us(γs) =
1

1− ξ
γ1−ξs , ξ > 1.

This is a widely used utility function in WSNs [45]. Here ξ is
a constant, and the value of ξ is usually set to be greater than
or equal to 8 [9]. In our next implementation, the parameter ξ
was set to 9. Figs. 5 and 6 present the convergence behavior
for our proposed algorithm with fixed stepsize and dimnishing
stepsizes.

From Figs. 5 and 6, we can see that our our proposed primary
algorithm is able to approach the optimal utility very fast with
an estimation error less than 0.01 by using fixed stepsize and di-
minishing stepsizes. Since the diminishing stepsizes are bigger
than the fixed stepsize (here it is 0.01) at the beginning of the
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Fig. 7. The convergence comparison of the proposed algorithm and CPA with
α = β = 0.01

iterations, therefore, the case with dimishing stepsize obtains a
faster convergence rate compared to the case with fixed stepsize.

B. Comparisons of the Covergence Speed

CPA is a kind of primary-dual algorithms, which is often used
to solve the utility maximization problem with coupled utility
functions. Therefore, we use the CPA with α = 0.01, β = 0.01
as a benchmark to evaluate the convergence speed for solving
the problem (18). As shown in Fig. 7, our proposed primary al-
gorithm and the CPA all approach the optimal total utility. How-
ever, the convergence rate of our proposed primary algorithm is
faster than that obtained by the CPA. As CPA needs to update
primary variables and dual variables, and let primary variables
converge to the optimal values by decreasing the duality gap,
this usually needs many iteration times. On the contrary, our
proposed algorithm directly updates the primary variables, thus
it obtains a faster convergence rate.

As described above, the stepsize has a great influence on the
convergence speed of the algorithms. Fig. 8 presents the conver-
gence speeds of the CPA and our proposed algorithm for solv-
ing the problem (18) with a different stepsize α = 0.005, β =
0.005. Figs. 7 and 8 show that the CPA and our proposed algo-
rithm reduce their convergence rates and obtain more smoother
curves as the step length decreases. However, our proposed al-
gorithm also achieves a faster convergence rate compared with
the CPA.

As ADMM can quickly converge to the consensus problem.
Next, we compare the convergence speed of the our proposed al-
gorithm with ADMM for solving the problem (18). In the exper-
iment, the stepsize α of our proposed algorithm and the penalty
factor ρ of ADMM are set to 0.01 and 15, respectively.

From Fig. 9, we can see that our proposed primary algorithm
and ADMM need about 50 and 100 iterations to approach the
optimal value, respectively. The convergence speed of our pro-
posed primary algorithm is faster than that obtained by ADMM
for solving the problem (18). Moreover, as can be seen from
Fig. 9, we also know that the iteration curve obtained by ADMM
has a bigger oscillation than ours.

Next, we compare the convergence speed of our proposed al-
gorithm with CPA and ADMM on another network scenario as
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Fig. 8. The convergence comparison of the proposed algorithm and CPA with
α = β = 0.005

Fig. 9. The convergence comparison of the proposed algorithm and ADMM
with α = 0.01 and ρ = 15.
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Fig. 10. The convergence comparison of the proposed algorithm and CPA with
ξ = 9 and α = β = 0.01

specified in the previous section. In Figs. 10 and 11, we provide
the comparisons of convergence rates of these three algorithms.

From Figs. 10 and 11, we can see that the convergence speed
of our proposed algorithm is faster compared with CPA and
ADMM. These results are similar to those presented in Figs. 7
and 9. These validate the conclusion that our proposed algo-
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Fig. 11. The convergence comparison of the proposed algorithm and ADMM
with ξ = 9, α = 0.01 and ρ = 15.

rithm obtains a faster convergence speed.

VI. CONCLUSIONS

We propose a primary algorithm for solving globally coupled
NUM problems based on local consensus algorithm and subgra-
dient algorithm, and apply our proposed algorithm to power con-
trol in WSNs. Based on the simulation results, it can be seen that
our proposed algorithm is effective in convergence speed com-
pared with the classical primary-dual algorithm for the power
control of WSNs.

The distributed NUM algorithms rely heavily on information
exchanges between different network elements, such as traf-
fic sources and routers. However, the feedback information is
usually inaccurate because of time-varying networks and noise
interference. Thus, another interesting direction for future re-
search would be to examine the impact of feedback noises on
our proposed method.
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APPENDIX A

Proof: [Proof of Theorem 1] We need the following
Lemma 1 to finish our proof. The proof of Lemma 1 is sim-
ple, please refer to [46]

Lemma 1. Assume that function f(x) is convex and its gra-
dient is β−Lipschitz continuity, this means,

|| 5 f(x)−5f(y)||2 ≤ β||x− y||2. (19)

Then we have,

f(x)−f(y) ≤ 5f(x)
T

(x−y)− 1

2β
||5f(x)−5f(y)||2. (20)

Assume that y∗r is the optimal solution of the primary the
problem (7). Base on the algorithm (15), we have

||yr(t+ 1)− y∗r ||2
= ||

∑
j∈n(r)

mrjyj(t) + α(t)Ūr − y∗r ||2

= ||
∑

j∈n(r)
mrjyj(t) + α(t)Ūr −

∑
j∈n(r)

mrjy
∗
r ||2

= ||
∑

j∈n(r)
mrj(yj(t)− y∗r ) + α(t)Ūr||2,

(21)

where we use the fact that
∑

j∈n(r)
mrj = 1 in the second step.

Next, for the simplicity of the notation, we assume that all co-
efficients mrj , j ∈ n(r) are equal, and let mrj = µ, j ∈ n(r),
α(t) = α. Then, we can rewrite the equation (21) as follows
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|| yr(t+ 1)− y∗r ||2

=µ2||yr(t)− y∗r ||2 + 2µαŪr(yr(t)− y∗r )

+ 2µα
∑

j∈n(r)\r

Ūr(yj(t)− y∗r )

+
∑

j∈n(r)\r

µ2||(yj(t)− y∗r )||2 + α2||Ūr||2. (22)

By assumption that Ur is concave and Ūr is β−Lipschitz con-
tinuity, combining with Lemma 1, we have

− Ur(yr(t))− (−Ur(y∗r ))

≤ −Ūr(yr(t)− y∗r )− 1

2β
||Ūr(yr(t))− Ūr(y∗r )||2. (23)

As Ur(y∗r ) ≥ Ur(yr(t)) and Ūr(y∗r ) = 0, from equation (23),
we have

Ūr(yr(t)− y∗r ) ≤ − 1

2β
||Ūr(yr(t))||2 (24)

Combining equations (22) and (24), it then yields that

|| yr(t+ 1)− y∗r ||2

≤µ2||yr(t)− y∗r ||2 + (α2 − µα

β
)||Ūr||2

+ 2µα
∑

j∈n(r)\r

Ūr(yj(t)− y∗r ) +
∑

j∈n(r)\r

µ2||(yj(t)− y∗r )||2.

(25)

Next, using this fact that y∗i = y∗j ,∀i, j ∈ R, the equation
(25) can be rewritten as

|| yr(t+ 1)− y∗r ||2

≤µ2||yr(t)− y∗r ||2 + (α2 − µα

β
)||Ūr||2

+ 2µα
∑

j∈n(r)\r

Ūr(yj(t)− y∗j ) +
∑

j∈n(r)\r

µ2||(yj(t)− y∗j )||2.

(26)

For the last two items in equation (26), using Lemma 1 again,
we have

||yr(t+ 1)− y∗r ||2
≤

∑
j∈n(r)

(µ2||yj(t)− y∗r ||2 + (α2 − µα
β )||Ūr||2). (27)

If α2 − µα
β ≤ 0, we then have

||yr(t+ 1)− y∗r ||2
≤

∑
j∈n(r)

µ2||yj(t)− y∗r ||2. (28)

By the summation of the above equation (28), it yields∑
r∈R
||yr(t+ 1)− y∗r ||2

≤
∑
r∈R

µ2||yr(t)− y∗r ||2.
(29)

Therefore, if α2 − µα
β ≤ 0, it follows that yr(t) converges to

y∗r when t tends to infinity. 2
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