
Creative Commons Attribution-NonCommercial (CC BY-NC).

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022 365

MobiRPL: Adaptive, Robust, and RSSI-based
Mobile Routing in Low Power and Lossy Networks

Hongchan Kim, Hyung-Sin Kim, and Saewoong Bahk

Abstract—This paper tackles the mobile routing issues in low-
power and lossy networks (LLNs). The IPv6 standard routing
protocol for LLNs, termed IPv6 routing protocol for low-power
and lossy networks (RPL), has mostly been investigated in static
LLNs and it has no explicit mechanism to support mobility. In
addition, there is no mobile routing protocol that works well in
mobile LLNs. Considering the importance of mobility support
in many LLN applications, this work designs and implements
MobiRPL, an adaptive, robust, and received signal strength
indicator (RSSI)-based mobile routing scheme based on the
RPL standard. To cope with network dynamics, the MobiRPL
design focuses more on maintaining reliable routing topology
than on minimizing energy consumption. This design choice
significantly improves reliability while maintaining the acceptable
energy consumption of mobile LLNs. We implement MobiRPL
on Contiki OS, and evaluate its effectiveness extensively through
Cooja simulation and testbed experiments. Our results from
the testbed show that MobiRPL improves mobile nodes’ packet
delivery ratio by 11.3% compared to RPL and reduces the energy
consumption of mobile nodes by 73.3% compared to the baseline
scheme, i.e.,the lightweight on-demand ad-hoc distance-vector
routing protocol - next generation (LOADng).

Index Terms—IEEE 802.15.4, low power lossy network (LLN),
mobility, routing.

I. INTRODUCTION

RPL, the IPv6 routing protocol for low-power and lossy
networks (LLNs) standardized in 2012, has been con-

sidered as a building block of Internet of Things (IoT) and
received great attention from LLN researchers [1]–[4]. RPL
reliably and energy-efficiently forms a quasi-forest routing
topology to provide IPv6 connectivity to a large number of
resource-constrained embedded devices through a few border
routers. Motivated by LLN application scenarios, such as
home, industrial, urban, and building applications [5]–[8],

Manuscript received January 16, 2022; approved for publication, January
18, 2022. This paper is specially handled by EIC and Division Editor with
the help of three anonymous reviewers in a fast manner.

This work was supported in part by Korea Environment Industry &
Technology Institute (KEITI) through Exotic Invasive Species Management
Program, funded by Korea Ministry of Environment (MOE) (2021002280002),
in part by the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2021-0-
02048) supervised by the IITP (Institute of Information & Communications
Technology Planning & Evaluation), and in part by the New Faculty Startup
Fund from Seoul National University.

H. Kim and S. Bahk are with the Department of ECE and INMC, Seoul
National University, Seoul, Republic of Korea, email: hckim@netlab.snu.ac.kr,
sbahk@snu.ac.kr.

H.-S. Kim is with the Graduate School of Data Science, Seoul National
University, Seoul, Republic of Korea, email: hyungkim@snu.ac.kr.

S. Bahk and H.-S. Kim are corresponding authors.
Digital Object Identifier: 10.23919/JCN.2022.000004

RPL was designed under the assumption that most devices
are static, having no mechanism to explicitly support mobile
devices. Not surprisingly, most researches on RPL have con-
sidered only static nodes [2].

At the same time, however, there are non-zero mobile
devices in the above application scenarios: Remote controllers
and wearable devices at home [7], cranes, forklifts, and work-
ers in an industrial environment [6], and occupants and mov-
able assets in a building [8]. In addition, clinical applications
include mobile medical staffs and patients [9]. To minimize
network dynamics with these mobile nodes, there is a routing
design guideline in [8]: “Mobile devices, while in motion,
should not be allowed to act as forwarding devices.” Following
this, a number of studies have investigated RPL in hybrid
settings: Static router nodes and mobile leaf1 nodes (walking
speed) [10]–[17]. They showed that RPL is problematic even
in hybrid environments and attempted to alleviate the problem.

However, depriving mobile nodes of routing/forwarding
capability gives a nontrivial constraint: Every mobile node
must be within the (unpredictable) coverage of at least one
static router node. Strictly speaking, this constraint requires
predicting all possible travel areas of mobile nodes and de-
ploying static router nodes sufficiently to cover all the areas,
which is hard or impractical in many cases. Even if static
router nodes are sufficiently deployed, problems can still arise.
Communication environments may change while the network
operates. For example, an obstacle added to the network
(e.g., a person passing through the network) can make the
connection between nodes lost. If the static router nodes are
battery-powered, they may fail to provide connectivity due
to low battery. In these situations, the remaining static router
nodes may not be able to provide connectivity throughout the
network [18], [19].

This work considers more general mobility scenarios (i.e.,
non-hybrid settings) where both static and mobile nodes (still
having walking speed) participate in packet routing and for-
warding. Our intuition is that allowing routing/forwarding of
mobile nodes can significantly improve connectivity, reduce
the deployment burden, and improve their ability to cope
with network dynamics. There have been some studies that
explored RPL in more general mobility scenarios [20]–[27].
However, some of these studies have limitations arising from
inefficient operation designs, and some studies require several
assumptions or the support of external mechanisms to operate
correctly. Therefore, there is a need for a mobile RPL that

1Nodes that do not have sub-nodes and do not perform routing/forwarding
for other nodes.

1229-2370/22/$10.00 © 2022 KICS

366 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

considers the fundamental problems of RPL in mobile LLNs
and works with minimal assumptions.

On the other hand, given that the RPL design does not
aim to support the general mobility scenario above, why
don’t we use or improve another routing protocol origi-
nally designed for mobile networks, such as the lightweight
on-demand ad-hoc distance-vector routing protocol - next
generation (LOADng) [28], rather than RPL? LOADng is
a lightweight routing protocol designed for mobile ad-hoc
networks (MANETs). Considering that LLN mostly generates
upward traffic (i.e., data collection), it is not clear to say that
LOADng is well suited for LLN. Indeed, there have been var-
ious studies comparing RPL and LOADng [29]–[33]. Because
the existing routing protocols designed for data collection do
not cope with mobility well, it is worth testing LOADng under
various scenarios.

Although LOADng is designed for mobile networks, we
found that LOADng has scalability issues as traffic increases
due to its flooding-based reactive nature. Besides, to the best
of our knowledge, RPL, in terms of both protocol design and
implementation, has been most extensively investigated and
tested in LLN environments considering resource constraints
and link dynamics. In this regard, studying mobile routing in
the context of RPL builds on two decades of LLN research
and makes our work well-grounded.

Challenges. In a scenario where mobile nodes perform for-
warding, challenges are on the protocol design phase rather
than the deployment phase. Given that including mobile router
nodes increases network dynamics, how can we design RPL
to be reliable and energy-efficient under such dynamics? The
following two requirements need to be fulfilled.
(1) Parent2 table management: A node should keep track
of each neighbor node’s link quality and Rank information
reasonably fast to maintain the parent table freshly. At the
same time, information tracking should not impose too much
control overhead on the network.
(2) Parent selection3: To cope with dynamics, a parent selec-
tion mechanism should focus on stability rather than efficiency
(e.g., shortest path). Selecting an efficient but barely connected
node as the preferred parent may cause confusion in a dynamic
mobile network. Although efficiency is not a primary concern
in parent selection, it should not be overlooked either.

Approach. RPL fails to meet the above requirements and
provide an appropriate routing topology in a mobile net-
work scenario. We introduce MobiRPL, which addresses the
challenges without violating the RPL standard. Compared to
previous work regarding RPL, MobiRPL design puts more
weight on reliability than energy efficiency. The idea is that
low energy consumption makes sense only when a reliable
routing topology is given. To this end, we design MobiRPL
with three main components.
(1) Mobility detection: MobiRPL Allows both mobile and
static nodes to participate in packet forwarding. However, the

2In RPL, a candidate node for the next-hop node in the upward route is
called a parent. The currently selected parent node is called a preferred parent.
The parent table stores all the parent nodes (both preferred and non-preferred).

3Parent selection means choosing a preferred parent among the parents.

characteristics of mobile and static nodes in the routing pro-
cess are very different. To ensure good routing performance,
MobiRPL allows each node to detect its mobility from routing
information and makes routing decisions based on the detected
mobility.
(2) Connectivity Management: Each node manages the
connectivity with parent nodes according to its mobility. To
this end, MobiRPL performs timeout and probing in which the
period is adaptively adjusted. If a parent node is determined
as disconnected, MobiRPL excludes the parent node from the
parent table. If there are not enough valid parent nodes in the
parent table, MobiRPL discovers new parent nodes through
proactive discovery.
(3) RSSI and hop distance-based objective function: In
order to select a suitable preferred parent for stable routing
in mobility scenarios, MobiRPL uses received signal strength
indicator (RSSI) and hop distance as routing metrics instead
of the popular expected transmission count (ETX). MobiRPL
makes parent selection more stable under dynamic environ-
ments by considering node mobility along with the RSSI and
hop distance based routing metric.

Contributions. We summarize the contributions of this work
as follows.
• We perform a measurement study of RPL and LOADng,

verifying that LOADng is not a good choice for LLNs by
showing its scalability issues.

• We give routing/forwarding capability to mobile LLN nodes
and show the feasibility of dynamic scenarios by resolving
challenges on the RPL protocol design.

• We design MobiRPL, including the above three components,
implement it on Contiki operating system. We make our
prototype implementation publicly available.4

• We verify the effectiveness of MobiRPL on Cooja simula-
tion [34] and a 34-node testbed. On the testbed, MobiRPL
shows an 11.3% increase in packet delivery ratio compared
to RPL and a 73.3% decrease in energy consumption
compared to LOADng at mobile nodes, outperforming RPL
and LOADng.
The remainder of this paper is organized as follows. We first

discuss the brief background and related work in Section II.
In Section III, we present the preliminary study results. We
summarize the requirements for our proposed scheme in
Section IV. We introduce our proposed scheme, MobiRPL,
and elaborate on its main functional blocks in Section V. We
discuss the implementation details and the evaluation results
in Section VI. We conclude the paper in Section VIII.

II. BACKGROUND AND RELATED WORK

There have been two types of research efforts to support
mobile LLN: (1) Extending RPL [1] to cover mobile nodes
and (2) modifying routing protocols for MANETs to support
LLNs. The latter results in LOADng [28], a lightweight ver-
sion of ad-hoc on-demand distance vector (AODV) (a standard
MANET routing protocol) [35]. This section reviews the two

4https://github.com/Hongchan-Kim/MobiRPL

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 367

representative protocols, RPL and LOADng, and their related
work.

A. RPL and Mobility

RPL Design. Given that traffic mostly goes upwards in
LLN (i.e., data collection), RPL forms a destination-oriented
directed acyclic graph (DODAG) rooted at a root node,
generally an LLN border router to external networks. Each
RPL node in a DODAG, including the root node, propagates
routing information by broadcasting a control message named
DODAG information objective (DIO). An RPL node obtains
RPL configurations by receiving DIO and participates in a
DODAG by choosing a preferred parent. The DIO transmis-
sion interval follows TrickleTimer [36], which doubles the
DIO interval after each DIO transmission to minimize control
overhead while resetting it to the minimum upon inconsistency
detection for fast route recovery. In addition, a node triggers
a DIO transmission from its neighbor nodes on demand by
sending a DODAG information solicitation (DIS) message.

An RPL node selects the best preferred parent from many
candidates by using the path metric called Rank. The defini-
tion of Rank and rules for parent selection, called objective
function (OF), are decoupled from the main RPL standard.
The most widely used OF is minimum rank with hysteresis
objective function (MRHOF) [37], which uses ETX as the link
quality metric and accumulated ETX over a node’s upward
path as its Rank. The use of ETX is to minimize upward
transmission overhead. Lastly, each node transmits destination
advertisement object (DAO) messages to the root node along
the upward route, which sets its downward route from the root
as the reverse of the upward route.
Mobility Support with RPL. Several studies have investi-
gated RPL operation in mobile scenarios, showing that RPL
suffers significant performance degradation due to lack of
consideration for mobile nodes [2], [38]–[40].

A number of studies have tried to improve RPL to support
mobile nodes, most of which use mobile nodes only as leaf
nodes (i.e., hybrid setting). For example, KP-RPL supports a
parent handover for mobile leaf nodes [10]. A mobile node
estimates its location by applying Kalman filter to the RSSI
from adjacent static nodes. Then it calculates the expected
ETX from RSSI and handovers to the best static node. The
authors in [13] proposed mobility-aware parent selection RPL,
which considers hop distance and RSSI value together to
detect the moving direction of a mobile leaf node and then
handover to the parent located on the path of movement.

Under the hybrid settings, some studies have attempted to
support mobility in an energy-efficient way. EMA-RPL [14]
delegates most of their mobility support operations to static
nodes to reduce the overhead of mobile nodes. When a static
node detects the mobility of a mobile node from RSSI changes,
it triggers the mobile node to start burst DIS broadcasting.
Neighboring static nodes measure the average RSSI of DIS
messages, append it to DIO, and reply to the mobile node.
Then the static node that firstly detected the mobility compares
RSSI values in DIO messages and informs the mobile node of
the best static node. Finally, the mobile node connects to the
next static node. EKF-MRPL [15] further improves EMA-RPL

by introducing the Extended Kalman filter (EKF). EKF-MRPL
assumes that mobile nodes know the exact location of static
nodes. Static nodes detect mobility and trigger mobile nodes,
similar to EMA-RPL. However, in EKF-MRPL, a mobile node
broadcasts DIS once and receives a unicast DIO response from
each DIS recipient. By applying EKF to the RSSI values from
DIO responses, the mobile node estimates its location and
direction, then determines the best static node for connection.

However, depriving mobile nodes of routing/forwarding
capability significantly increases the deployment burden; static
nodes should be deployed in large enough numbers to cover
all areas of the network. Whenever an area where static nodes
cannot provide connectivity appears, mobile nodes will not be
able to communicate with other nodes without additional static
nodes deployed.

Assuming hybrid environments, some other studies have
improved timer operations of RPL to better support mobility.
The authors in [11] designed a node having a mobile leaf
node as a child to exploit a reverse TrickleTimer (i.e., halving
the DIO interval after each DIO transmission). The intuition
is that the link quality between a mobile leaf node and its
preferred parent is likely to be degraded as time goes by,
and reducing the parent’s DIO interval enables the mobile
leaf node to update routing information quickly. The authors
in [12] proposed DIS interval adaptation for mobile nodes to
get DIO quickly when needed. A mobile node calculates the
time taken to leave the communication range of the currently
connected static node by using RSSI and the Doppler effect.
Then it schedules DIS broadcast before it departs the static
node, thus enabling timely DIO reception and handover.

However, the modified timer mechanisms designed for
mobile nodes to receive DIO faster or more often do not nec-
essarily help mobile nodes. No matter how fast or how often
DIO is sent, if RPL does not manage newly updated routing
information appropriately, this information will be outdated
and incorrect soon. Such incorrect routing information may
lead mobile nodes to choose unreachable parents and lose
connectivity repetitively. Therefore, the improvement in parent
table management should precede the enhancement in timer
operations.

Some studies have considered more general mobility (i.e.,
non-hybrid setting) scenarios where mobile nodes can perform
routing or forwarding. The authors in [20] proposed ME-RPL,
which gives mobile nodes routing capability in a limited way.
When selecting its preferred parent, a ME-RPL node prefers
static nodes to mobile nodes since static nodes are more likely
to provide robust connectivity. mRPL [21] and mRPL+ [22]
support parent handover for mobile nodes. When a mobile
node detects that the RSSI from its preferred parent is low, it
broadcasts a batch of DISes. Each DIS recipient measures the
average RSSI of the DIS batch and includes it when sending a
DIO as a reply. Then the mobile node selects a node reporting
the best RSSI as its preferred parent.

To cope with dynamics in mobile LLNs, MoMoRo [23]
detects route disconnection from link loss and obtains neighbor
information quickly by requesting a unicast response. It intro-
duces a fuzzy estimator that considers multiple link metrics to
find a neighbor connected through a good link. Co-RPL [24]

368 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

defines corona ID (minimum hop distance) to indicate how
close a node is to the root node and uses it for parent selection.
RRD [25] utilizes the RSSI of a broadcast message and an
ACK message to detect a mobile node’s moving direction.
RRD updates the Rank and assigns an appropriate length
of lifetime to a route based on this direction and the RSSI
value. GTM-RPL [26] introduces game theory into the RPL
to support mobility. It finds an optimal parameter setup to
minimize mobile nodes’ disconnected period. However, GTM-
RPL did not investigate the problems arising from the protocol
design of RPL.

Although these prior studies extend RPL for mobility sce-
narios, their Rank (i.e., ETX) and parent selection are from
mobility-unfriendly MRHOF, which is their fundamental lim-
itation. MRHOF was designed without considering mobility.
For example, even between links that show the best ETX,
some other difference may exist, such as the physical distance
gap between nodes [41], [42]. This distance gap can be an
essential parameter in choosing a long-lasting routing path
in mobility scenarios, but ETX cannot provide such signifi-
cant information. Moreover, MRHOF applies an exponentially
weighted moving average (EWMA) filter to the ETX. This
filtering lowers the responsiveness of the link metric to the
link quality change and makes it challenging for mobile nodes
to cope with mobility. Therefore, ETX and MRHOF should
be reconsidered together to better support mobility.

Several recent studies have attempted to improve the per-
formance of RPL in mobile scenarios based on specific
assumptions or external mechanisms. The authors in [16]
proposed Coral software-defined networks (SDN), which co-
operates with performance-limited IoT devices. Coral SDN
can change RPL parameters to suit mobile scenarios even
during runtime. However, the authors only naively controlled
parameters related to DIO interval. SDMob [17] is another
example of SDN-based mobility support for RPL in a hybrid
setting. In SDMob, mobile nodes are equipped with inertial
measurement unit (IMU) sensors. The SDN controller knows
the precise location of static nodes. Each mobile node peri-
odically broadcasts a beacon, including velocity information
from IMU sensors. Static nodes receiving the beacon append
the measured RSSI and relay it toward the SDN controller.
Then the SDN controller calculates the best next static node
for the mobile node based on information contained in the
beacon and notifies the result to the mobile node.

ARMOR [27] aims at a mobile RPL for a non-hybrid
setting. In ARMOR, all nodes are assumed to know their ve-
locity and location using IMU sensors or external localization
mechanisms. Then, each node calculates the time-to-reside
(TTR) within the communication range of each neighboring
node. ARMOR chooses the parent with the longest connection
time using the TTR as a new routing metric.

As aforementioned, many studies have tried to improve RPL
to support mobile nodes. However, despite their various at-
tempts, each has its own limitations. Therefore, it is necessary
to fundamentally investigate why RPL does not work well on
mobile nodes and design a mobile RPL that comprehensively
considers the problems observed in RPL. Besides, the assump-
tions or mechanisms introduced to better support mobility may

limit the usability of mobile RPL protocols. For example, it
will not be able to add IMU-free devices to the network where
a routing protocol is assumed to use IMU sensors. On the other
hand, routing protocols that require localization or SDN will
not function properly unless the conditions are met. Therefore,
we need a mobile RPL protocol that operates with minimal
assumptions.

B. LOADng, a MANET Protocol for LLN

Many routing protocols have been developed for
MANETs [43], such as destination sequenced distance vector
(DSDV) [44], optimized link-stated routing (OLSR) [45],
AODV [35], and dynamic source routing (DSR) [46].
In LLN, however, these protocols cause significant control
overhead and/or slow recovery [47]. To alleviate the problems,
LOADng [28], [48], [49], a lightweight version of AODV,
was proposed as a routing solution for mobile LLNs.

As in AODV, a source node in LOADng broadcasts a
route request (RREQ) message to discover a path toward its
destination node. Different from AODV, however, LOADng
allows only the destination node to send a route reply (RREP)
message back to the source as a response to the RREQ; an in-
termediate node only relays the RREQ, which simplifies proto-
col operation. When detecting a route failure, a LOADng node
sends a route error (RERR) message only to the source node,
which removes memory overhead for maintaining a precursor
list. LOADng also exploits a random jitter when sending an
RREQ to resolve congestion due to RREQ flooding. Despite
its optimization for LLNs, LOADng is fundamentally not free
from AODV’s RREQ flooding overhead, which increases with
the number of end-to-end sessions [47] and worsens in a duty-
cycled network.

LOADng has not been investigated extensively in academia,
much less than RPL. Several studies have revealed that in
static scenarios, LOADng provides similar performance as
RPL only in sparse LLN deployments [29]–[33]. Otherwise,
LOADng underperforms RPL. As an improvement, LOADng-
CTP [49], [50] tweaks LOADng to better support data col-
lection, building a tree-shaped routing structure rooted at a
sink node as RPL and CTP do. Nevertheless, without any
experimental evaluation, it is still unclear if LOADng is
really an effective solution for mobile LLNs. One of our
contributions is to provide the measurement study of LOADng
on a mobile LLN testbed.

III. PRELIMINARY STUDY

The previous sections qualitatively showed why it makes
sense to design a new mobile routing protocol for LLNs.
Building on this intuition, this section presents an experimen-
tal, quantitative study of RPL and LOADng on an LLN testbed
in static scenarios and a simulation in mobile scenarios.

A. Static Scenario: RPL vs. LOADng

We configure an indoor testbed with 31 static TelosB-
clone nodes where one node acts as the root, as depicted in
Fig. 1. Each node uses −10 dBm transmission power and an

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 369

0 10m

34

2

5
6

10

11

12

13

18 19

2223

24

29

7

8

9

31

25

28
30

27 1416
15

17

26

3

4
20 21

Root node

Static node (group A)

Static node (group B)

Static node (group C)

Mobile node

32

33

1

Fig. 1. An indoor testbed with 31 static nodes and 3 mobile nodes. The
mobile nodes move along the path shown in the figure.

10 20 30

Number of sender nodes

0

20

40

60

80

100

P
D

R
 (

%
)

RPL

LOADng

(a) PDR

10 20 30

Number of sender nodes

0

20

40

60

80

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

RPL

LOADng

(b) Routing overhead

10 20 30

Number of sender nodes

0

0.2

0.4

0.6

0.8

1

Q
u
e
u
e
 l
o
s
s
 /
m

in

RPL

LOADng

(c) Queue loss

10 20 30

Number of sender nodes

0

5

10

15

20

D
u
ty

 c
y
c
le

 (
%

)

RPL

LOADng

(d) Duty cycle

Fig. 2. Performance of RPL and LOADng on a testbed with 31 static nodes
(Fig. 1) according to the number of end-to-end sessions.

antenna of 5 dB gain. For the routing layer, RPL and LOADng
implementations on Contiki OS [51] version 3.0 are used. The
underlying link layer is ContikiMAC [52], the asynchronous
duty-cycling MAC of Contiki OS. We set the sleep interval of
ContikiMAC as 31.25 ms (32 Hz channel check rate).

To evaluate the scalability of RPL and LOADng according
to the number of end-to-end sessions, we divide 30 nodes
(except the root) into three groups (group A, B, and C), each
of which has ten nodes. Then, we observe the performance of
RPL and LOADng with varying the number of data senders.
We consider a bidirectional traffic scenario. Each sender node
transmits an upward packet every 60 seconds. At the same
time, the root node generates the same amount of downward
traffic as the upward traffic by sequentially sending downward
packets to the sender nodes over 60 seconds. The total number
of upward and downward packets generated for each sender
is 120 each. Fig. 2 plots various performance metrics in the
scenario (the average of five repetitive experiments).

As seen in Fig. 2(a), the end-to-end packet delivery ra-
tio (PDR) of LOADng decreases sharply as the number of
sender nodes increases, while RPL maintains high PDR.
This performance difference comes from the different routing
mechanisms of RPL and LOADng; while RPL manages a

10m

Root node

Static node

Mobile node

10m

5

6

7

8

9

10

11

12

13

2

3

4

14

1

Fig. 3. A mobile LLN scenario on the Cooja simulator with 12 static nodes,
a mobile node, and a root. All the nodes have the same transmission range
(50 m), and one example is indicated by a large light blue circle.

single DODAG topology for all nodes, LOADng builds a
separate end-to-end route per sender-destination pair, resulting
in up to 30 independent routes in our setting. Given that
LOADng floods RREQ messages to build a route for a sender-
destination pair, its routing overhead increases with the number
of data senders (i.e., the number of routes). This is verified
in Fig. 2(b), which shows the routing overhead of RPL
and LOADng. While RPL maintains low routing overhead
regardless of the number of senders, LOADng incurs much
higher routing overhead than RPL, and the amount increases
with the number of senders. As a result, LOADng incurs ∼150
times more routing overhead than RPL. If we add more senders
to the network, LOADng causes more routing overhead, while
RPL would maintain a similar level of routing overhead.

With an asynchronous duty-cycling MAC, such as Contiki-
MAC, the large flooding overhead causes severe congestion
and contention problems. Fig. 2(c) shows that in LOADng
cases, several nodes suffer severe queue loss when the number
of senders is large. This confirms that the congestion level
caused by LOADng is above the threshold which resource-
constrained nodes can cope with. According to Fig. 2(d), the
large routing overhead decreases PDR due to congestion and
increases duty cycle since each node frequently turns on the
radio to exchange more routing control packets. Given the rela-
tionship between the number of nodes and flooding overhead
of LOADng, duty cycle also increases in proportion to the
number of senders. Duty cycle, calculated as a percentage of
the time the radio is turned on during the entire operating time,
is directly related to energy consumption. If the network’s size
becomes very huge, LOADng will not be able to avoid large
energy consumption.

Overall, LOADng’s performance in a static LLN is very
bad. Although it is designed to support mobility, it is not an
alternative to RPL as it cannot support many data senders. Its
performance degrades as the number of data senders increases.
Given that RPL performs well on static LLNs, it is worth
improving RPL to support mobile LLNs.

B. Mobile Scenario: RPL’s Problems

We now focus on RPL and investigate how it behaves in a
mobile LLN. To do this, we perform simulations by using the
Cooja simulator with the 14-node topology depicted in Fig. 3.
To focus on the routing layer’s behavior, we use NullRDC,
an always-on link layer implementation on Contiki OS. Only
upward packets are transmitted to facilitate analysis.

370 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

TABLE I
SIMULATION SCENARIOS FOR EVALUATING THE PERFORMANCE OF RPL

IN MOBILE SCENARIOS.

Scenario Node 14 Data interval (s) DIO interval (s)
1 Static 30 4-1048
2 Mobile 30 4-1048
3 Mobile 6 4-1048
4 Mobile 30 1-4
5 Mobile 6 1-4

1 2 3 4 5

Scenario

0

20

40

60

80

100

P
D

R
 (

%
)

Node 2-13

Node 14

(a) PDR

2 3 4 5

Scenario

0

0.2

0.4

0.6

0.8

1
P

a
re

n
t
c
h
a
n
g
e
 /
m

in
 /
n
o
d
e

(b) Parent change (mobile node)

2 3 4 5

Scenario

0

20

40

60

80

100

R
a
ti
o
 o

f
c
h
o
o
s
in

g

 c
o
n
n
e
c
te

d
 p

a
re

n
t
(%

)

(c) Accuracy of routing decision (mo-
bile node)

2 3 4 5

Scenario

0

20

40

60

80

100

P
a
re

n
t
ta

b
le

 a
c
c
u
ra

c
y
 (

%
)

Precision

Recall

(d) Accuracy of parent table (mobile
node)

Fig. 4. Performance of MRHOF-based RPL in the simulation scenarios
described in Fig. 3 and Table I.

We perform simulations on five different scenarios, as
shown in Table I. Scenario 1 sets all nodes to be static, which
serves as a ground result. In the other four scenarios, a mobile
node (node 14) moves along the line illustrated in Fig. 3 at
a speed of 1 m/s. We conducted the same simulation for the
speeds of 0.5 m/s, 2 m/s, and 5 m/s, but the experimental
results were similar to that for 1 m/s. In all the scenarios,
all the 13 nodes except the root send upward packets. All
the scenarios allow the mobile node to participate in packet
forwarding. Both data and DIO intervals affect the routing
performance of RPL. Therefore, we conduct a simulation
with various parameter values. Scenarios 1 and 2 have the
default configuration. Scenarios 3 and 4 decrease data and
DIO intervals of not only the mobile node but also static nodes,
respectively. Scenario 4 decreases both data and DIO intervals
of static and mobile nodes.

Fig. 4 plots the simulation results (the average of five repet-
itive experiments with different random seeds). As Fig. 4(a)
shows, all 14 static nodes show the PDR of nearly 100% in
Scenario 1, meaning that RPL operates well in static LLNs.
However, in all the other scenarios, while the static nodes
have PDR close to 100%, the PDR of the mobile node plunges
down to below 40% regardless of DIO and data intervals. This
implies that RPL’s problem in mobile scenarios is not simply
about parameter settings but something more fundamental.

For a mobile node to communicate well, it is necessary
to change the (communication) route as it moves. As seen

in Fig. 4(b), however, reducing data or DIO interval does
not sufficiently increase the number of parent changes5. This
means that RPL does not detect its need for parent change.
Even in scenario 4, where the number of parent changes
increases the most, PDR is not improved significantly. RPL’s
efforts to update routes do not end up working as intended.

We further analyze the simulation results to reveal why
RPL’s path update mechanisms do not operate well in mo-
bile LLNs. We examine the ratio at which the mobile node
selects a new preferred parent that is actually connected when
changing its preferred parent. Fig. 4(c) shows that the ratio is
below 40%. The mobile node significantly misunderstands its
environment, identifying a disconnected neighbor as a valid
parent candidate. This implies that the mobile node’s parent
table may not be managed timely.

To confirm this, we measure the average precision (the ratio
of actually connected nodes among the nodes regarded to be
connected in the parent table) and recall (the ratio of nodes
considered to be connected in the parent table among the
actually connected parents) of the mobile node’s parent table
measured at the moment the parent node changes. Fig. 4(d)
shows that recall becomes high when DIO interval is low (i.e.,
scenarios 4 and 5), meaning that the mobile node fast discovers
new parents. On the other hand, precision is lower than 30% in
all the cases regardless of parameter settings, confirming that
the mobile node misunderstands that a disconnected parent
is connected. The low precision incurs faulty parent changes,
resulting in performance degradation.
Problem Analysis: Looking into the RPL design together with
the experimental results, we have found the three problems in
RPL as below, which motivates us to design MobiRPL.
• Slow Link Quality Update: ETX in RPL is easily outdated,

which is not suitable for mobile LLNs: (1) ETX is a
statistical metric, which is slowly updated and cannot detect
quick changes in link connectivity in mobile environments.
(2) A node updates ETX for a neighbor only after sending
a unicast packet to the neighbor. Given that RPL sends
upward data traffic only to the preferred parent, ETX for a
non-preferred parent becomes outdated. (3) Even ETX for
the preferred parent can be outdated depending on upward
packet interval. When upward packet interval is too long
compared to mobility, a mobile node can misunderstand
that its outdated preferred parent is still valid, losing many
upward data packets in the air.

• Rough Link Quality Representation: Even when ETX is
completely up-to-date, it has an inherent limit in design:
Representing link quality in terms of packet transmission
reliability (i.e., link PDR). Given that PDR does not de-
crease linearly with RSSI but suddenly drops from > 90
percent to < 10 percent at a certain RSSI threshold (e.g.,
–87 dBm) [53], ETX can finely distinguish link quality
around that threshold. However, it cannot distinguish a very
robust link from possibly fragile links. For example, when
choosing an upward route, two candidate links may have
the current ETX of 1 (best quality), but one link has an
RSSI of –60 dBm and the other has –85 dBm. Although

5We will briefly call a change of a preferred parent a parent change.

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 371

the –85 dBm candidate link currently has good reliability, it
is likely to become bad (below –87 dBm) in the near future
due to mobility. The –60 dBm candidate link is more robust
to mobility, which cannot be identified by ETX.

• Lack of Connectivity Management: RPL, as a routing
protocol instead of a neighbor management protocol, does
not have an explicit mechanism to manage connectivity with
neighbors. Although a disconnected neighbor may have a
bad ETX value, it can be still in the parent table as a valid
parent candidate and selected as the preferred parent. For
example, under MRHOF, a node with a high ETX value
can be selected as the preferred parent if it has a very low
Rank.

IV. DESIGN REQUIREMENTS

We summarize the requirements for MobiRPL to support
mobility as follows.

• MobiRPL should update the link quality of the preferred
parent frequently enough to timely detect its disconnection,
regardless of the data interval.

• MobiRPL should determine connectivity with all known
parents and avoid choosing a disconnected parent as its
preferred parent.

• MobiRPL should discover new potential parents fast and
efficiently when needed.

• MobiRPL should have a new objective function that is more
suitable for mobility support than ETX-based MRHOF. It
should give preference to robust links over possibly fragile
links, regardless of current packet delivery performance.

In addition to meeting these requirements to improve relia-
bility in mobile LLNs, energy efficiency should be also con-
sidered since MobiRPL runs on energy-constrained embedded
devices. In the considered scenario, since many nodes are still
static, it can be overkill to put a significant effort into quickly
updating the link quality for all nodes. For example, if a static
node has a static preferred parent, it does not have to frequently
update the link quality of the preferred parent. In this case,
saving energy would be a better choice. To provide energy-
efficient operation for static nodes while improving reliability
for mobile nodes, MobiRPL should detect the mobility of each
node and treat mobile nodes differently from static nodes.
Therefore, we add one more requirement for MobiRPL design:

• MobiRPL should detect the mobility of each node and
differentiate between static and mobile nodes.

V. MOBIRPL DESIGN

In this section, we design MobiRPL to satisfy the above five
requirements of RPL in detail. MobiRPL introduces three new
mechanisms: (1) Mobility detection, (2) connectivity manage-
ment, and (3) RSSI and hop distance-based objective function,
as shown in Fig. 5.

A. Mobility Detection

Our first mechanism, mobility detection, enables MobiRPL
to determine the node’s mobility.6 We let MobiRPL detect
mobility from the average interval of parent changes: Mobility
increases as the parent change interval decreases. Our intuition
is that mobile nodes should be able to change their preferred
parent more often than static nodes. Given that RPL is de-
signed to make static nodes rarely change preferred parents,
this interval of parent change would be significantly large
for static nodes while small for mobile nodes. Therefore, by
setting a threshold (tc,thr) large enough, we can distinguish
most mobile nodes from static nodes.

Specifically, we use the exponentially weighted moving
average (EWMA) of the parent change interval to avoid
misjudgment from the temporary parent change caused by
network fluctuations other than mobility. Let tc and tc denote
the parent change interval and EWMA value of tc, respec-
tively, and α be a coefficient between 0 and 1. When the i-th
parent change occurs, MobiRPL calculates the i-th EWMA
value (tc,i) from the previous EWMA value (tc,i−1) and the
newly measured parent change interval (tc,i) as

tc,i = α · tc,i−1 + (1− α) · tc,i. (1)

It is then intuitive for MobiRPL to classify a node as a static
node if its tc,i is greater than or equal to a threshold (tc,thr),
or as a mobile node otherwise.

For static nodes, however, tc may not be updated timely.
Specifically, when tc,i is very long due to stable link quality
(e.g., more than an hour), an update from tc,i−1 to tc,i is
significantly delayed. For example, a newly installed static
node may frequently change its preferred parent i times (i.e.,
low tc,i−1 value) and settle in one preferred parent (i.e., very
long tc,i). In this case, tc remains small for a long time,
resulting in misclassification of the static node as a mobile
node. To alleviate such a problem, we define another average
value, tm, and use it as the mobility metric for MobiRPL,
rather than tc.

MobiRPL calculates tm in two cases. As exemplified in
Fig. 6, when the i-th parent change occurs, MobiRPL cal-
culates t0m,i as (using the newly calculated tc,i)

t0m,i = tc,i. (2)

Even without the parent change, every moment when tjm,i has

passed since the last calculation of tjm,i, MobiRPL calculates

tj+1
m,i as

tj+1
m,i = α · tc,i + (1− α) ·

j∑
k=0

tkm,i, (3)

and uses tj+1
m,i as tm for the moment. Then, MobiRPL compares

tm with a predetermined threshold tc,thr to determine mobility.
In this way, static nodes can fast increase tm even without their
parent changes, avoiding misclassification.

6If additional hardware components, such as accelerometer, are allowed,
this mechanism can be replaced. This mechanism is to enable mobility support
regardless of such external components.

372 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

200710. 수정버전

RPL

Link layer

Preferred parent change

Mobility, lifetime, RSSI, and
consecutive loss

Lifetime reset, blacklisting

My mobility

RSSI, consecutive loss update

preferred parent selection

Proactive discovery,
unicast probing

Rx Tx
Incoming packet

Additional information for MobiRPL Additional module for MobiRPL

Parent table

Entry 1

Mobility Lifetime

RSSI Consecutive
loss

Entry 2

…
…

Entry k

Mobility
detection

IP layer

Forwarding
table

Packet
queue

Connectivity
management

RHOF

Fig. 5. Overview of MobiRPL Design. We propose three new mechanisms (mobility detection, connectivity management, and RHOF) as a part of RPL. Our
new mechanisms better cope with mobility by interacting with existing RPL operations and IP layer.

𝑡𝑚,𝑖
𝑗

= 𝛼 ∙ 𝑡𝑐,𝑖 + 1 − 𝛼 ∙ ෍

𝑘=0

𝑗−1

𝑡𝑚,𝑖
𝑘

𝑡𝑚,𝑖
0 = 𝑡𝑐,𝑖

𝑡𝑐,𝑖 = 𝛼 ∙ 𝑡𝑐,𝑖−1 + 1 − 𝛼 ∙ 𝑡𝑐,𝑖

Preferred parent change Mobility metric update

𝑡𝑐,1

𝑡𝑐,0 𝑡𝑐,1

𝑡𝑚,0
0

𝑡𝑚,0
0

……
𝑡𝑚,0
1

𝑡𝑚,0
1 𝑡𝑚,0

2 𝑡𝑚,1
0……

Fig. 6. MobiRPL’s mobility detection based on the parent change interval.

MobiRPL piggybacks the detected mobility in the reserved
bits of the RPL control messages (e.g., DIO message) and
advertises it on the neighboring nodes. This piggybacking
enables each node to know the mobility of its neighboring
nodes. Overall, the mobility detection mechanism enables
a MobiRPL node to detect the mobility of itself and its
neighbors. The other two mechanisms of MobiRPL utilize this
mobility information for routing and energy saving in mobile
LLNs.

Our mobility detection relies on the average interval of
parent changes (tm). Therefore, even if we set the threshold
(tc,thr) large enough, the speed or mobility patterns of mobile
nodes can affect detection accuracy. For example, a mobile
node that moves extremely slowly and does not change its
preferred parent frequently may consider itself a static node.
However, the other two mechanisms help MobiRPL resolve
such exceptional cases. We will discuss more details later,
but RHOF makes static nodes prefer static nodes in parent
selection and rarely change their preferred parents. Therefore,
the parent change interval of static nodes gradually increases,
making it possible to distinguish between slow mobile nodes
and static nodes. The connectivity management mechanism
also helps MobiRPL find a valid routing path, even if mobility
detection is temporarily inaccurate.

B. Connectivity Management

An explicit connectivity management mechanism is neces-
sary for a MobiRPL node to timely include (or exclude) a new
(or disconnected) parent in (or from) the parent table and to
change the preferred parent accurately in mobile LLNs. At the
same time, the connectivity management mechanism should
balance between energy efficiency and timely operation. To
this end, our connectivity management includes adaptive
timeout-based connectivity detection, adaptive probing, and
proactive discovery, which operate adaptively based on the
result of mobility detection.

1) Adaptive Timeout: MobiRPL utilizes timeout-based
connectivity detection. We let tl,0 denote the timeout period
(to be used as the initial value of the lifetime). Then, each
MobiRPL node detects that its neighbor is disconnected if it
cannot receive any packet from the neighbor during a timeout
period tl,0. MobiRPL excludes disconnected parents from the
valid parent candidate set. The timeout period tl,0 is a key
parameter for timely and accurate connectivity management. If
tl,0 is too long, a MobiRPL node will consider a disconnected
node as a valid parent, resulting in faulty parent changes
due to the outdated information. On the other hand, if tl,0 is
too short (i.e., shorter than packet interval), a MobiRPL node
will misunderstand that a connected node with a long packet
interval is disconnected.

Then, what value should MobiRPL use as tl,0? Considering
that an RPL node periodically transmits DIO messages, the
DIO interval can be used to configure the timeout period. If
the timeout period is shorter than the DIO interval, MobiRPL
may hastily mark a connected node as disconnected. Another
factor is mobility since a mobile node should fast update its
connectivity with each neighbor, which a static node does not
have to do.

Considering these two factors, we define tl,0 as

tl,0 = TDIO,max · 2−m, 0 ≤ m ≤ M, (4)

where TDIO,max is the maximum DIO interval, and the
exponent m is a control parameter. We design tl,0 to be
exponentially adjusted, given that the DIO interval is also

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 373

exponentially adjusted by TrickleTimer. Specifically, a Mo-
biRPL node updates the control parameter m when its mobility
detection mechanism updates tm. Suppose the updated tm
classifies that the node is mobile. In that case, the node sets its
parameter m to M (maximum), which minimizes the timeout
period tl,0 to the minimum timeout period Tl,min and enables
the fastest connectivity updates right away. Otherwise, if the
node is determined to be static, it decreases m by 1 (i.e.,
doubles tl,0), gradually increasing tl,0 toward TDIO,max.

Overall, this timeout period adaptation enables both mobile
and static nodes to update their neighbors’ connectivity, re-
moving disconnected nodes from the parent table. Note that
this packet reception-based connectivity detection does not
incur any additional communication overhead. A caveat is
that reducing the timeout period tl,0 at a mobile node does
not trigger any action at its neighbor nodes: The neighbors
still send DIO with a long interval. Therefore, this adaptive
timeout mechanism classifies a number of connected nodes
as disconnected ones, reducing the number of valid parent
candidates.

One way to resolve this tendency is to reduce the mobile
node’s neighbor nodes’ DIO interval like [11]. However,
reducing the DIO interval violates the default TrickleTimer
operation of RPL. Furthermore, considering that the mobile
node does not stay near a particular node continuously, reduc-
ing the DIO interval will benefit the mobile node only for a
very short period of time. Reduced DIO interval may instead
cause frequent unnecessary DIO transmissions in most cases.
Therefore, instead of reducing the DIO interval, we propose
adaptive probing and proactive discovery mechanisms.

2) Adaptive Probing: We design the adaptive probing
mechanism to compensate for the adaptive timeout mecha-
nism’s defects described above. It would be good for a node to
actively probe all the neighbors at least once within its timeout
period in terms of accuracy. However, this aggressive approach
incurs not only network congestion but also significant energy
consumption at mobile nodes as the timeout period decreases.
The adaptive probing mechanism in MobiRPL actively probes
only the preferred parent to balance between energy efficiency
and accuracy. Our intuition behind this design choice is that
hastily determining the preferred parent as a disconnected node
triggers unnecessary parent changes, degrading network per-
formance. In contrast, misclassifying connected non-preferred
parents as disconnected ones would be relatively fine.

Specifically, our probing mechanism sends N unicast pack-
ets to the preferred parent within the timeout period tl,0 to
check connectivity. This means that a MobiRPL node detects
the preferred parent’s disconnection when it fails to send N
packets consecutively. To this end, the probing interval, tp, is
calculated as

tp = tl,0/(N + 1). (5)

If a data transmission has been recently performed, the next
probing is skipped to reduce control overhead. Fig. 7 exem-
plifies this adaptive probing operation along with the adaptive
timeout operation introduced above.

MobiRPL can use any unicast RPL control messages (e.g.,
DIS, DIO, and DAO) for adaptive probing. In the current

Lifetime reset 1st probing 2nd probing Nth probing Timeout

Preferred parent
𝒑

Blacklist 𝒑 and generate early timeout

𝑡𝑝 𝑡𝑝𝑡𝑝 ……

𝑡𝑙,0

Timeout

Non-preferred
parent 𝒏

Timeout occurs and blacklist 𝒏

𝑡𝑙,0

Lifetime reset

Fig. 7. MobiRPL ’s connectivity management including adaptive timeout and
adaptive probing.

implementation, MobiRPL uses unicast DIS messages for
probing. Given that a unicast DIS is replied by both link-layer
acknowledgment (ACK) and unicast DIO, it is possible to mea-
sure connectivity (link-layer information) and get the preferred
parent’s latest Rank (routing-layer information). However, it is
also possible to limit DIO replies to reduce overhead. The most
important thing is to get new RSSI information.

3) Proactive Discovery: The two mechanisms above, adap-
tive timeout and adaptive probing, check whether valid parent
nodes in the parent table are still connected. This is to
exclude a parent node from the parent table as soon as it is
disconnected. However, these two mechanisms do not discover
potential new parents that are not in the parent table yet.
Discovering new parents timely is necessary for a mobile
node to change its preferred parent accurately. To this end,
we design proactive discovery as the last piece of connection
management.

Given that static nodes operate well with the standard
RPL, proactive discovery is triggered only at a mobile node
(indicated by mobility detection). Specifically, a mobile node
triggers proactive discovery when its parent table does not have
any parent with a robust link (white zone defined by RHOF in
Section V-C). In such a situation, with the current parent table
entries, the mobile node would suffer fragile link connectivity
no matter which parent it selects as the preferred parent.
Instead of selecting the best (fragile) node as the preferred
parent, discovering if there are new parent candidates will help
accurate parent change.

When proactive discovery is triggered, MobiRPL broadcasts
a single DIS message to request DIO messages from neighbor-
ing nodes. MobiRPL uses the reserved 1 bit of DIS message to
indicate whether the DIS is for proactive discovery or not. This
flagged DIS triggers two different operations at a DIS receiver
compared to a normal DIS. (1) When a node receives a DIS
sent for proactive discovery, it selectively responds to the DIS,
only when it can be a parent of the DIS sender (i.e., its Rank
is lower than or equal to the DIS sender’s Rank). Note that the
proactive discovery is for finding potential parents. (2) If the
DIS receiver decides to respond, it immediately sends a DIO
message but does not reset the TrickleTimer. This is because
sending multiple DIOs to the mobile node does not add much
value to its parent table. The mobile node keeps moving, and
the information given by multiple DIOs will be outdated soon
anyway. These two unique actions at a DIS receiver reduce
communication overhead without sacrificing the accuracy of
proactive discovery.

374 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

Overall, with the three components described so far, our
connectivity management mechanism timely manages connec-
tivity with low overhead in mobile LLNs. This mechanism
maintains connectable routing paths more effectively, using the
RSSI and hop distance-based objective function which will be
described next.

C. RSSI and Hop Distance-based Objective Function

ETX is slowly updated and cannot distinguish a robust
link from a potentially fragile link. To alleviate the problems,
we introduce RSSI and hop distance-based objective function
(RHOF) that utilizes the hop distance from the root for Rank
and RSSI for the link quality metric.

1) Metric Choice: Hop distance, as pure routing-layer
information, does not include link quality information at all.
This is why end-to-end ETX, which includes multi-hop link
cost from the preferred parent to the root, is used for Rank
instead of hop distance in static LLNs. In mobile LLNs,
however, link cost information in ETX is not reliable, even
more so in the case of multi-hop link cost in end-to-end
ETX (accumulated from the root). Thus in mobile LLNs,
simply using hop distance without link quality information is
more reliable than using inaccurate link quality information in
end-to-end ETX. Therefore RHOF calculates Rank from hop
distance as follows.

Rank(N) = Rank(P) +MinHopRankInc, (6)

where MinHopRankInc is the minimum unit of Rank in-
crease defined in RPL standard.

Although MobiRPL does not allow a node to know multi-
hop link cost from its parent to the root, it tries to accurately
identify one-hop link cost from the node to its parent, which
is necessary for mobile LLNs. To this end, RHOF utilizes
RSSI as the link quality metric. Although RSSI is a highly
fluctuating metric, there have been a number of recent attempts
to use RSSI as a link quality metric by taking advantage
of its simplicity [25], [54], [55]. As a signal strength metric
related to physical distance, RSSI can distinguish a robust link
(e.g., −50 dBm) from a possibly fragile link (e.g., −85 dBm)
regardless of the current transmission performance. Note that
PDR can be 100% for both links. Moreover, updating RSSI
does not require any unicast transmission; it is easily updated
from receiving any packets (data, DIS, ACK, DIO, etc.). Since
RSSI is not a statistical metric, it can be measured from a
single packet reception. Thus, using RSSI enables to update
link cost fast in mobile LLNs. In addition, we address the
challenge of using RSSI, high fluctuation, as below.

2) Link Quality Classification: To utilize RSSI while
mitigating its fluctuation, RHOF does not use raw RSSI
values but link quality zones. Specifically, RHOF classifies
neighboring nodes into three zones according to the lastly
measured RSSI as shown in Table II. Inspired by Thread [54],
a network protocol currently being actively used in the IoT
domain, RHOF classifies nodes with RSSI above RSSIthr
as a white zone. The nodes connected by the link with
RSSI lower than the threshold are classified as grey zone.
To handle RSSI fluctuation, RHOF considers hysteresis in

TABLE II
RHOF WITH A CONTROLLABLE THRESHOLD AND A FIXED HYSTERESIS

(4 DB).

Condition Zone
Parents with higher RSSI than RSSIthr White zone
Parents with lower RSSI than RSSIthr Gray zone

Blacklisted parents Black zone

TABLE III
RHOF PRIORITY CALCULATION FROM THE PERSPECTIVE OF A STATIC

NODE AND A MOBILE NODE.

Static node perspective Mobile node perspective
Zone Static Mobile Zone Static Mobile
White 1 3 White 1 2
Gray 2 4 Gray 3 4

comparing RSSI values. RHOF classifies the nodes that seem
to be disconnected into a black zone. RHOF regards the
link with N -consecutive packet losses as disconnected. The
nodes determined as disconnected by connectivity management
mechanism are also classified as the black zone. RHOF selects
the best preferred parent among the parents in the parent table
based on the Rank and the zone determined by RSSI.

3) Parent Selection: As discussed before, MobiRPL allows
mobile nodes to participate in packet forwarding. However,
static nodes can provide a more stable routing path than mobile
nodes. Therefore, it is reasonable to prefer static nodes rather
than mobile nodes in the best parent selection. We propose a
simple yet effective method that makes static node be preferred
in parent selection. This method does not explicitly distinguish
the roles of the mobile and static nodes.

We use the mobility information broadcasted by mobility
detection mechanism. RHOF calculates priority for each parent
based on the mobility information and the measured RSSI.
RHOF prefers parents with higher priority as preferred parent.
Using this priority, RHOF can choose a preferred parent
that is suitable for itself, taking into account the mobility of
neighboring nodes as well as the Rank and RSSI. Table III
shows how this priority is calculated. We note that the priority
is differently calculated in static nodes and mobile nodes.
This is because the preference according to the RSSI and the
mobility is different between static nodes and mobile nodes.
Static nodes can select static preferred parent that can reduce
Rank even if RSSI is lower than the threshold. On the other
hand, maintaining connectivity is essential for mobile nodes,
so that mobile nodes must choose high RSSI preferred parent
first.

RHOF never considers the nodes in the black zone as a
preferred parent candidate. The blacklisted nodes are excluded
from the parent change process until connectivity is confirmed
through packet reception. Between the nodes not in the black
zone, RHOF prioritizes nodes with a higher priority over
nodes with a lower priority. The node with a smaller Rank is
preferred among the nodes with the same priority. For nodes
with the same priority and Rank, RHOF chooses the node
with higher RSSI. Suppose the current preferred parent and
the newly selected best parent have the same priority and
Rank, and the difference between their RSSI values is smaller

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 375

than the hysteresis. In that case, RHOF does not change the
preferred parent and reduce routing overhead.

Because RHOF considers RSSI and Rank together in the
preferred parent selection, sometimes child or descendant
nodes can be seen as an attractive parent candidate. For
example, if there is a very close child node that is classified
as the white zone and all other nodes are in the gray zone,
the child node might have a higher priority in preferred parent
selection. However, choosing such a child node could make
a routing loop occur. To prevent this, we add a “Rank filter”
as a part of our RHOF. Rank filter allows a node to exclude
the neighbor nodes with a Rank greater than or equal to itself
from parent candidates. This filter makes RHOF consider only
nodes that are not expected to be children or descendants.

Overall, RHOF makes MobiRPL choose the best preferred
parent to maintain connectivity in a mobile scenario. The
synergy between the three mechanisms introduced and the
basic RPL operations enables MobiRPL to effectively perform
data delivery even in mobile LLNs.

VI. PERFORMANCE EVALUATION

In this section, we evaluate MobiRPL on Cooja simulator
and a real-world testbed. MobiRPL aims to improve the overall
performance of RPL to support mobile nodes in non-hybrid
LLNs. We, therefore, compare MobiRPL against the default
RPL. In addition, we show that appropriately improved RPL
may be more suitable for mobile LLNs than MANET routing
protocols (e.g., LOADng). Therefore, we compare MobiRPL
with LOADng in terms of various performance perspectives.
We discuss the details of how well MobiRPL adapts to
mobile LLN environments and achieves improved routing
performance. We first examine the impact of MobiRPL’s
mechanisms and parameters on performance. We then verify
the performance of MobiRPL in more complex and diverse
scenarios. In the following sections, if static nodes achieve
PDRs of nearly 100%, we omit the plots for the PDRs of the
static nodes.

A. Implementation and Evaluation Environments

We implement MobiRPL on Contiki OS version 3.0. Our
implementation supports a TelosB-clone mote. As an under-
lying link layer, we use both always-on link layer (NullRDC)
and ContikiMAC provided by Contiki OS. When applying
ContikiMAC, we set the sleep interval as 31.25 ms (32 Hz
channel check rate), to provide enough transmission chances
in mobile scenarios. All the evaluation results are averaged
over five repetitive experiments.

For Cooja simulation-based evaluations, we use three sce-
narios. The first scenario is identical to the scenario 2 in
Fig. 3 and Table I. We will call this scenario Cooja-1. Fig. 8
shows the second and third scenarios of Cooja simulation-
based evaluation. In these two scenarios of multiple mobile
nodes, the root node is at the center, and six static nodes are
located around the root in a regular hexagonal shape. The
distance between two adjacent nodes is 40 m. We deploy up
to eighteen mobile nodes around the root and static nodes.

1 2

34

5

6 7

200 m

200 m

1 2

34

5

6 7

250 m

250 m

Root node

Static node

(a) Simulation topology with a
radius of 200 m (Cooja-2)

1 2

34

5

6 7

200 m

200 m

1 2

34

5

6 7

250 m

250 m

Root node

Static node

(b) Simulation topology with a radius of
250 m (Cooja-3)

Fig. 8. Mobile LLN scenarios on the Cooja simulator with one root, 6
static nodes, and up to 18 mobile nodes. A small circle indicates each node’s
transmission range. The mobile nodes move within the outer circle following
Random way-point model [56].

Mobile nodes move inside a circle around the root node. We
set the radius of the circle where mobile nodes can move as
200 m and 250 m. All the nodes have the same transmission
range (50 m).

There are shaded areas where mobile nodes cannot be
connected to static nodes, which is represented as a gray area
in Fig. 8. Mobile nodes independently move following Ran-
dom way-point model [56] with the minimum and maximum
speeds of 0.5 m/s and 2.0 m/s, respectively. We will name
the scenarios with the radius of 200 m and 250 m as Cooja-2
and Cooja-3, respectively. Using the Cooja-2 and Cooja-3 sce-
narios, we examine the performance of MobiRPL in situations
where the number of mobile nodes is large. We also investigate
whether the mobile node’s participation in packet forwarding
helps other mobile nodes maintain connectivity to the network
when the static nodes cannot provide connectivity.

For the testbed-based evaluation, we use the testbed shown
in Fig. 1. For evaluations including mobility, we add three
mobile nodes to the testbed. We configure a mobile node using
a model train, Raspberry-pi7, portable battery8, and TelosB-
clone mote, as illustrated in Fig. 9(a). On the line drawn with
arrows in Fig. 1, model train rails are installed. We installed
model rails in various places such as corridors, classrooms,
laboratories, supply rooms, warehouses. Many obstacles exist
there, such as desks, chairs, PCs, wooden or steel shelves,
trash cans, paper boxes, etc, which can disrupt communication
or cause RSSI fluctuations. Fig. 9(b) is a picture of our
mobility-augmented testbed taken at the corner where node
24 is located. Three mobile nodes travel back and forth along
their corresponding lines at a speed of about 0.4 m/s.

Table IV summarizes the default experimental parameters.
Unless explicitly stated in each experiment, we apply the
default parameters in Table IV.

B. Impact of MobiRPL Mechanisms

We first investigate the impact of MobiRPL’s mechanisms in
a simple scenario, Cooja-1. The mobile node (node 14) moves

7We used Raspberry-pi 2 model B for logging real-time evaluation results.
8We used a portable battery named PLM09ZM, made by Xiaomi, whose

capacity is 10,000 mAh. In our evaluation, the battery lasted about 26 hours.

376 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

TABLE IV
EVALUATION SETTINGS AND PARAMETERS.

Parameters Testing environments Values
tc,thr All 120 s
Tl,min All 16 s
N All 2

RSSIthr All −83 dBm
TDIO,min All 4.096 s
TDIO,max All 1048.576 s

ContikiMAC channel check rate All 32 Hz
Cooja-1 120 upward packets (1 packet / 30 seconds)

Cooja-2 and 3 100 upward/downward packets (1 packet / 60 seconds)Traffic pattern
Testbed 120 upward/downward packets (1 packet / 60 seconds)
Cooja-1 1 m/s

Cooja-2 and 3 0.5–2.0 m/s (Random way-point model)Mobile node speed
Testbed 0.4 m/s

Cooja-1, 2, and 3 0 dBmTransmission power Testbed −10 dBm with 5 dB antenna

(a) Mobile node (b) Mobile node’s travel path consisting of model rails

Fig. 9. Mobile node configuration and the travel path of mobile nodes. The
model rail is installed in the path shown in Fig. 1, and the mobile node travels
back and forth along the model rail.

TABLE V
COMBINATION CASES OF MobiRPL MECHANISMS FOR EVALUATING THE

IMPACT OF MobiRPL MECHANISMS.

Case Connectivity
Management RHOF Proactive

discovery
1 X X X
2 O X X
3 O O X
4 O O O

along the line illustrated in Fig. 3 at a speed of 1 m/s. We
apply the always-on link layer (NullRDC) to this evaluation
to concentrate on the behavior of mechanisms in mobile LLNs.
We consider upward traffic only for ease of analysis. For each
node, a total of 120 upward packets are transmitted to the
root node every 30 seconds. The mobile node is allowed to
participate in packet forwarding.

We measure various performance metrics while changing
the combination of mechanisms applied. As shown in Table V,
we examine four cases: The default RPL (case 1), RPL with
connectivity management without proactive discovery (case
2), RPL with RHOF and connectivity management without
proactive discovery (case 3), and MobiRPL (case 4). We apply
the mechanism of mobility detection in all cases.

The minimum timeout period (Tl,min) is 16 s, and the
number of probing (N) for adaptive probing is 2 (twice).
The threshold of parent change interval for mobility detection
(tc,thr) is 120 s. The RSSI threshold (RSSIthr) of RHOF is
−83 dBm.

Fig. 10(a) shows the average upward PDR. While RPL

Static node Mobile node
0

20

40

60

80

100

P
D

R
 (

%
)

Case 1

Case 2

Case 3

Case 4

(a) PDR

Static node Mobile node
0

0.5

1

1.5

2

2.5

P
a
re

n
t
c
h
a
n
g
e
 /
m

in
 /
n
o
d
e

Case 1

Case 2

Case 3

Case 4

(b) Parent change (mobile node)

1 2 3 4

Case

0

20

40

60

80

100

R
a
ti
o
 o

f
c
h
o
o
s
in

g

 c
o
n
n
e
c
te

d
 p

a
re

n
t
(%

)

(c) Accuracy of routing decision (mo-
bile node)

1 2 3 4

Case

0

20

40

60

80

100

P
a
re

n
t
ta

b
le

 a
c
c
u
ra

c
y
 (

%
)

Precision

Recall

(d) Accuracy of parent table (mobile
node)

1 2 3 4

Case

0

5

10

15

20

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

DIS

DIO

DAO

(e) Routing overhead (static node)

1 2 3 4

Case

0

5

10

15

20

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

DIS

DIO

DAO

(f) Routing overhead (mobile node)

Fig. 10. Performance of MobiRPL depending on the type of mechanisms
applied. We test four cases described in Table V.

shows PDR lower than 30%, the connectivity management
mechanism raises the PDR of mobile nodes to 80%. Other
mechanisms, such as RHOF and proactive discovery, further
increase the PDR of mobile nodes. The performance im-
provement comes from accurate routing decisions achieved
by our proposed mechanisms. As presented in Fig. 10(c),
MobiRPL’s mechanisms successfully improve the accuracy of
routing decisions made by mobile nodes.

Fig. 10(d), which shows the average precision and recall of
the mobile node’s parent table measured when parent changes

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 377

occur, accounts for this improved routing decision accuracy.
The connectivity management mechanism dramatically im-
proves the inferior precision of RPL by eliminating outdated
parent entries from the parent table. Although RHOF shows a
slightly lower precision than MRHOF, considering that the
connectivity management mechanism aggressively removes
the parent entries and the number of parents believed to be
connected is reduced, the precision does not drop significantly.
As proactive discovery is applied, the precision rises again.

Since the connectivity management mechanism deletes the
parent entries aggressively, we can observe that the recall also
drops. However, our RHOF and proactive discovery comple-
ment this decrease in recall. MRHOF changes the preferred
parent when the link quality with the current preferred parent
becomes very poor due to the nature of ETX. On the other
hand, RHOF changes the preferred parent if a better preferred
parent candidate exists, even if the link quality with the current
preferred parent is not very bad. In other words, RHOF reacts
more actively to the information added to the routing table than
MRHOF. Hence, the recall measured at the moment of parent
change also increases. Proactive discovery increases recall by
adding new parents to the parent table.

This improved routing accuracy allows the mobile node
to change its preferred parent more frequently and maintain
connectivity. As seen in Fig. 10(b), MobiRPL’s mechanisms
increase the number of parent changes made by the mobile
node. We note that RHOF and proactive discovery reduces the
number of parent changes while they increase PDR. This result
confirms that RHOF and proactive discovery help the mobile
node select the preferred parent with more robust connectivity,
thus lowering the need to change the preferred parent.

Figs. 10(e) and 10(f) show the average routing overhead
created by static nodes and mobile nodes, respectively. Com-
pared to RPL, MobiRPL’s mechanisms generate more routing
overhead. However, this increased routing overhead is not
wasted, and it makes mobile nodes successfully increase PDR
by maintaining connectivity. Applying RHOF and proactive
discovery slightly decreases static nodes’ routing overhead
because mobile nodes operate well with fewer parent changes
reducing the burden on static nodes.

C. Impact of MobiRPL Parameters

We now perform experiments with various MobiRPL param-
eters in Cooja-1 (one mobile node) with the same evaluation
settings used in Section VI-B. The most important two param-
eters in MobiRPL are the minimum timeout period (Tl,min)
and the number of times (N) probing is performed within the
timeout period. The mobile node sets the timeout period of
neighboring nodes to (Tl,min). Therefore, Tl,min is directly re-
lated to how MobiRPL aggressively blacklists neighbor nodes.
MobiRPL determines the link with N -consecutive packet
losses as disconnected. Therefore, increasing N improves the
accuracy of connectivity examination, but a larger N causes
a greater delay in connectivity judgment.

We evaluate MobiRPL with different parameter settings as
described in Table VI and plot the results in Fig. 11. Fig. 11(a)
shows the average end-to-end PDR of the mobile node. When

Tl,min is 16 s, except for the case where N is 1, the mobile
node achieves the PDR close to 100%. Even when N is 1,
the mobile node has a PDR of higher than 95%. If Tl,min

is 32 s, the PDR is not close to 100% in all cases, but it
approaches 100% as N increases. However, the PDR decreases
as N increases when Tl,min is set to 65 s, and it never reaches
100%. As shown in Fig. 11(b), the routing decision accuracy
accounts for these two opposite tendencies of PDR. Increasing
N makes routing decisions accurate when Tl,min is 16 s or 32
s, but it degrades the accuracy when Tl,min is 65 s.

We then discuss why N affects routing accuracy and PDR
differently according to Tl,min. If Tl,min is set large, MobiRPL
generates timeouts for non-preferred parents slowly. Consider-
ing that the probing interval for the preferred parent (tp) is set
proportionally to Tl,min, using large Tl,min causes MobiRPL
to take a longer time performing probing N times. Such a
delay in timeout and probing can make the parent table of
MobiRPL full of outdated entries. In this situation, increasing
N causes probing operation to take more time, and MobiRPL
cannot avoid wrong routing decisions. In short, if Tl,min is not
set short enough, increasing N does not have any advantage
other than accurately determining connectivity to the preferred
parent. From the discussion so far, we can derive a design
guideline for MobiRPL to set Tl,min and N . MobiRPL should
have Tl,min value small enough to cope with mobility. If Tl,min

is appropriately set, the PDR should increase as N increases.
Figs. 11(c) and 11(d) show the routing overhead of Mo-

biRPL. Using small Tl,min induces more routing overhead
because it makes timeout and probing occur more frequently
and MobiRPL perform more routing operations. Increasing N
also causes more routing overhead because it makes MobiRPL
perform more probings. Overall, Tl,min and N affect the PDR
and the amount of routing overhead, which is directly related
to the duty cycle of MobiRPL node and contention in the
network. Therefore, Tl,min and N should be set appropriately
to guarantee a high PDR with acceptable overhead.

Combining the discussions so far, although these two pa-
rameters’ appropriate values are environment-dependent, it is
possible to set universally applicable parameters in various
environments. Without restrictions on network capacity and
energy consumption, it is sufficient to set Tl,min very small
(e.g., 0.1 seconds) and then set N to an appropriately large
value (e.g., 4). If there are limitations to network capacity and
energy consumption in the real world, we cannot set Tl,min

and N this way. The device’s transmission range is generally
predetermined in the deployment phase. The mobile node’s
speed is given within a specific range (e.g., a person’s walking
speed is about 1 m/s). Given this, we can derive appropriate
values for Tl,min and N in advance, which can meet the
desired reliability and amount of overhead.

Considering all these, we set Tl,min to 16 s and N to 2
in the following evaluations. With these parameters, mobile
nodes can determine non-preferred parents that do not have
communication history for the last 16 seconds as disconnected.
By setting N to 2, mobile nodes can examine connectivity
with the preferred parent at least once every 5 seconds via
probing. Furthermore, due to the additional use of messages
such as DIO, the interval for verifying connectivity with the

378 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

TABLE VI
PARAMETER SETTINGS FOR EVALUATING THE IMPACT OF MobiRPL PARAMETERS.

Parameter setting Tl,min (s) N Parameter setting Tl,min (s) N Parameter setting Tl,min (s) N

1 16 1 5 32 1 9 65 1
2 16 2 6 32 2 10 65 2
3 16 3 7 32 3 11 65 3
4 16 4 8 32 4 12 65 4

16 32 65

 T
l,min

0

50

100

P
D

R
 (

%
)

 N = 1

 N = 2

 N = 3

 N = 4

(a) PDR (mobile node)

16 32 65

 T
l,min

0

20

40

60

80

100

R
a
ti
o
 o

f
c
h
o
o
s
in

g

 c
o
n
n
e
c
te

d
 p

a
re

n
t
(%

)
 N = 1

 N = 2

 N = 3

 N = 4

(b) Accuracy of routing decision (mo-
bile node)

1 2 3 4 5 6 7 8 9 10 11 12

Parameter setting

0

2

4

6

8

10

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

DIS

DIO

DAO

(c) Routing overhead (static node)

1 2 3 4 5 6 7 8 9 10 11 12

Parameter setting

0

10

20

30

R
o
u
ti
n
g
 p

k
ts

 /
m

in
 /
n
o
d
e

DIS

DIO

DAO

(d) Routing overhead (mobile node)

Fig. 11. Performance of MobiRPL depending on various parameter settings described in Table VI. For three different minimum timeout period values (Tl,min)
of 16, 32, 65 seconds, we evaluate MobiRPL while varying the number of times probing is performed (N) from 1 to 4.

RPL MobiRPL
0

20

40

60

80

100

P
D

R
 (

%
)

0.5 m/s

1 m/s

2 m/s

5 m/s

(a) PDR (mobile node)

RPL MobiRPL
0

20

40

60

80

100

R
a
ti
o
 o

f
c
h
o
o
s
in

g

 c
o
n
n
e
c
te

d
 p

a
re

n
t
(%

) 0.5 m/s

1 m/s

2 m/s

5 m/s

(b) Accuracy of routing decision (mo-
bile node)

Fig. 12. Performance of MobiRPL depending on the speed of the mobile
node. For four different speeds of 0.5, 1, 2, 5 m/s, we evaluate MobiRPL.

preferred parent node becomes less than 5 seconds. Thus,
even if a mobile node selects a disconnected node as a
new preferred parent, it can quickly check real connectivity,
enabling connecting with other parents again.

D. Impact of Circumstance Parameters

We now set Tl,min and N to 16 s and 2, respectively. In
Cooja-1, and with the same evaluation settings applied in
Section VI-B, we perform experiments while varying circum-
stance parameters, i.e., the speed of the mobile node to 0.5, 1,
2, and 5 m/s. Fig. 12 plots the result. As shown in Fig. 12(a),
at all speeds, MobiRPL outperforms RPL in PDR. When the
speed is 0.5, 1, and 2 m/s, MobiRPL achieves a PDR above
90%. At a speed of 5 m/s, which is much faster than the speed
we consider, the PDR of MobiRPL drops to around 60%, but
it is still 40% higher than RPL.

As shown in Fig. 12(b), the PDR improvement comes
from accurate routing decisions achieved by MobiRPL. At the
speed of 1 m/s, MobiRPL shows the best routing decision
accuracy and PDR. At 0.5 m/s, MobiRPL’s routing decision
accuracy decreases slightly. The topology setting of Cooja-1
accounts for this difference. The threshold of the parent change
interval for mobility detection (tc,thr) is 120 s. If the mobile

node moves at 0.5 m/s in the current topology, changing the
preferred parent sometimes takes longer than 120 s, leading
to inaccurate mobility detection and some decline in routing
decision accuracy.

When the mobile node does not move too slowly (e.g., faster
than 0.5 m/s), it correctly detects its mobility most of the time.
However, if the mobile node moves quickly (e.g., 2 m/s), the
routing decision accuracy can degrade due to the proactive
nature of MobiRPL. Nevertheless, as shown in Fig. 12(a), Mo-
biRPL overcomes deterioration in routing decision accuracy
and achieve high PDR through its connectivity management
mechanism. MobiRPL still surpasses RPL even if the mobile
node moves very fast (e.g., 5 m/s), but more appropriate
parameters may be required for MobiRPL to perform better
at such a rapid speed.

RPL shows poor PDR and routing decision accuracy regard-
less of the mobile node’s speed. We found that no matter the
mobile node’s speed, once outdated routing information fills
the mobile node’s parent table, RPL begins to make wrong
routing decisions repeatedly. RPL shows low PDR at all speeds
because it cannot make accurate routing decisions.

E. Performance of MobiRPL in Complicated Scenarios

From now on, we evaluate MobiRPL in more complicated
scenarios, Cooja-2 and Cooja-3. The underlying link layer is
ContikiMAC (with a channel check rate of 32 Hz) in both
scenarios. We consider a bidirectional traffic scenario. All the
nodes, including static and mobile nodes, transmit one upward
packet and one downward packet every 60 s (100 upward
packets and 100 downward packets in total). In these two
scenarios, static nodes cannot cover all the areas; thus, there
is a shaded area. We first examine the impact of the number
of mobile nodes, in Cooja-2. We then evaluate the impact
of allowing mobile nodes to participate in routing, in both
Cooja-2 and Cooja-3 scenarios. We use boxplots to plot and
analyze the performance of all individual nodes.

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 379

2 3 6 12 18

Number of mobile nodes

0

20

40

60

80

100

P
D

R
 (

%
)

(a) PDR of RPL (mobile node)

2 3 6 12 18

Number of mobile nodes

0

20

40

60

80

100

P
D

R
 (

%
)

(b) PDR of MobiRPL (mobile node)

2 3 6 12 18

Number of mobile nodes

0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

(c) Duty cycle of RPL (mobile node)

2 3 6 12 18

Number of mobile nodes

0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

(d) Duty cycle of MobiRPL (mobile
node)

2 3 6 12 18

Number of mobile nodes

0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

(e) Duty cycle of RPL (static node)

2 3 6 12 18

Number of mobile nodes

0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

(f) Duty cycle of MobiRPL (static
node)

0 1000 2000 3000

Latency per hop (ms)

0

0.2

0.4

0.6

0.8

1

2 nodes

3 nodes

6 nodes

12 nodes

18 nodes

(g) Latency of RPL (mobile node)

0 1000 2000 3000

Latency per hop (ms)

0

0.2

0.4

0.6

0.8

1

2 nodes

3 nodes

6 nodes

12 nodes

18 nodes

(h) Latency of MobiRPL (mobile
node)

Fig. 13. Performance of MobiRPL compared to RPL varying the number of
mobile nodes in Cooja-2.

1) Impact of the Number of Mobile Nodes: We now test
the impact of the number of mobile nodes. To this end, in
Cooja-2, we evaluate the performance of RPL and MobiRPL,
changing the number of mobile nodes to 2, 3, 6, 12, and 18.
There are six static nodes (excluding the root node) in Cooja-2;
thus, the ratio of mobile nodes to static nodes varies by 1/3,
1/2, 1, 2, and 3, respectively. In addition, we measure duty
cycle to compare energy consumption. We also examine per-
hop latency.

Fig. 13 plots the performance of RPL and MobiRPL.
Figs. 13(a) and 13(b) show the PDR of mobile nodes in
RPL and MobiRPL, respectively. While RPL always shows
PDR lower than 50%, MobiRPL achieves PDR around 80%.
Interestingly, MobiRPL’s PDR even increases with the number
of mobile nodes. The positive impact of mobile nodes in
MobiRPL is because MobiRPL makes mobile nodes participate
in packet forwarding timely and effectively. Given that a node

in the shaded area can deliver its packets only through other
mobile nodes, more mobile nodes in MobiRPL cause more
potential forwarders for the nodes in the shaded area. In
contrast, RPL cannot timely update routes with mobile nodes,
resulting in lower PDR in the presence of more mobile nodes;
mobile nodes cause nothing but chaos in RPL.

Figs. 13(c), 13(d), 13(e) and 13(f) show the duty cycle of
static and mobile nodes in RPL and MobiRPL. In all the
cases, MobiRPL shows a higher duty cycle than RPL since
it generates more control packets to maintain connectivity.
However, in exchange for increased energy consumption,
MobiRPL achieves much higher PDR compared to RPL.

Lastly, Figs. 13(g) and 13(h) show the average per-hop
latency among the packets successfully delivered to the des-
tination node. The results show that MobiRPL delivers twice
as many packets as RPL with slightly increased latency; it
saves many packets by using more time for proper routing. It
is important to note that low latency in RPL does not mean
that it is effective in mobile LLNs but that it delivers packets
only from the nodes nearby the root. Moreover, due to its
effective mobile routing, the maximum latency in MobiRPL is
much shorter than that in RPL, meaning that MobiRPL is not
likely to make packets wander in the network. We note that
this latency will vary according to the underlying link layer
protocol.

2) Impact of Allowing Mobile Nodes to Participate in
Routing: From now on, we evaluate MobiRPL in Cooja-2
and Cooja-3. We set the number of mobile nodes to 18, and
test the performance of MobiRPL and RPL. We designed
MobiRPL to allow mobile nodes to participate in packet
forwarding, assuming this will improve mobile nodes’ packet
delivery in mobile LLNs. To examine this, we simulate two
cases: 1) Mobile nodes are not allowed to participate in
packet forwarding, and 2) mobile nodes participate in packet
forwarding. In case 1, a mobile node operates as a leaf node
that does not generate multicast DIO messages and does not
become the preferred parent of other nodes.

Fig. 14 plots the performance of RPL and MobiRPL.
Figs. 14(a) and 14(b) show the PDR of mobile nodes in
Cooja-2 and Cooja-3. In both scenarios, regardless of whether
packet forwarding of mobile nodes is prohibited or not,
MobiRPL successfully increases the PDR by two to three
times compared to RPL. Cooja-3 has a wider shaded area
than Cooja-2, and it shows lower PDRs. However, MobiRPL
still shows higher PDR than RPL.

The PDR of RPL decreases if mobile nodes participate
in packet forwarding due to its ineffective mobile routing.
In MobiRPL, however, the participation of mobile nodes in
packet forwarding improves the PDR. This is because a mobile
node that moves into the shaded area can acquire connectivity
to the root node with the help of other mobile nodes. The
performance improvement is more significant in Cooja-3 than
Cooja-2; using mobile nodes for packet forwarding becomes
more useful as the shaded area becomes broader.

We now analyze energy consumption. Figs. 14(c), 14(d),
14(e), and 14(f) show the duty cycle of RPL and MobiRPL in
the both scenarios. In the same scenarios, for both static and
mobile nodes, MobiRPL shows a higher duty cycle than RPL

380 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

RPL MobiRPL
0

20

40

60

80

100

P
D

R
 (

%
)

Prohibited

Allowed

(a) PDR in Cooja-2 (mobile node)

RPL MobiRPL
0

20

40

60

80

100

P
D

R
 (

%
)

Prohibited

Allowed

(b) PDR in Cooja-3 (mobile node)

RPL MobiRPL
0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

Prohibited

Allowed

(c) Duty cycle in Cooja-2 (mobile
node)

RPL MobiRPL
0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)
Prohibited

Allowed

(d) Duty cycle in Cooja-3 (mobile
node)

RPL MobiRPL
0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

Prohibited

Allowed

(e) Duty cycle in Cooja-2 (static
node)

RPL MobiRPL
0

2

4

6

8

D
u
ty

 c
y
c
le

 (
%

)

Prohibited

Allowed

(f) Duty cycle in Cooja-3 (static
node)

Fig. 14. Performance of MobiRPL compared to RPL in complicated scenarios
(Cooja-2 and Cooja-3).

since MobiRPL generates more control packets than RPL to
maintain connectivity.

In Cooja-2 (a narrow shaded area), if mobile nodes are
allowed to forward packets, the duty cycles of static and
mobile nodes increase in the both protocols due to the mobile
nodes’ routing and forwarding overheads. On the other hand,
in Cooja-3 (a broad shaded area), allowing packet forwarding
of mobile nodes still increases the duty cycle of RPL, but
decreases the duty cycle of MobiRPL. Despite mobile nodes’
additional control overhead, MobiRPL’s timely management
of mobile routes significantly reduces route repair overhead,
resulting in lower duty cycle. In RPL, however, there is no
benefit for mobile nodes to participate in packet forwarding.

Lastly, note that, as discussed in Section II, most of RPL-
based mobile routing protocols prohibit mobile nodes from
participating in packet forwarding [10]–[17]. Without careful
design choices, allowing mobile nodes to forward packets
can result in performance degradation as RPL. For example,
some RPL-based mobile routing protocols allow mobile nodes
to forward packets [20], [23]–[25], but exploits ETX-based
MRHOF which is inappropriate for mobile LLNs as shown
in Section VI-B. In contrast, the results show that our design
choices for MobiRPL to allow mobile nodes’ packet forward-
ing is effective.

F. Performance of MobiRPL in Real World

We evaluate MobiRPL on a real indoor testbed, the same
as in Section III-A. There are 31 TelosB-clone static nodes,
including one root node, as depicted in Fig. 1. Besides, three
mobile nodes (nodes 32, 33, and 34) are deployed. Each node
uses −10 dBm transmission power and an antenna of 5 dB
gain. With various real-world obstacles, the testbed setting
forms a 4-hop network where the communication range is
10–15 m, shorter than that in Cooja-based simulations (50 m).
Considering that the mobile nodes move around at the speed of
0.4 m/s, we apply the same system parameters: Tl,min = 16 s
and N = 2. For the underlying link layer, ContikiMAC
with a channel check rate of 32 Hz is used. We consider
a bidirectional traffic scenario where all nodes generate one
upward packet and one downward packet every 60 s (120
upward packets and 120 downward packets in total). We allow
mobile nodes to participate in packet forwarding. We compare
MobiRPL with RPL and LOADng in terms of PDR and duty
cycle. Fig. 15 and Table VII show the results.

As can be seen in Figs. 15(a), and 15(b), although the
mobile nodes’ movement paths is simpler than those in the pre-
vious Cooja simulation scenarios, RPL provides significantly
lower PDR for mobile nodes than static nodes. LOADng shows
the lowest PDR because LOADng’s flooding-based routing
operation incurs severe congestion, preventing proper route
discovery. On the other hand, MobiRPL stably provides high
PDR both for mobile and static nodes.

For static nodes, MobiRPL provides slightly low PDR in
the early stage since its mobility detection mechanism requires
some time for each node to identify itself: Static or mobile
node. Once static nodes identify themselves as static, however,
they start to provide high PDR values, with a smaller deviation
compared RPL. This is because MobiRPL utilizes the mobility
type information, letting static nodes select other static nodes
(robust paths) as preferred parents, instead of mobile nodes
(fragile paths). Without mobility detection, RPL sometimes
selects mobile nodes as preferred parents.

As presented in Figs. 15(c), and 15(d), compared to RPL,
MobiRPL increases the duty cycle (energy consumption) of
both static nodes and mobile nodes due to more control
traffic (Table VII). This increase is larger than that observed
in the simulations (Cooja-1, Cooja-2, and Cooja-3) because
the topology in the testbed is much denser than that in the
simulation environments, resulting in more control packets.
However, the control traffic is needed to timely update mobile
routes, resulting in more parent changes in MobiRPL than
RPL as shown in Table VII. In addition, MobiRPL’s control
traffic still low enough to deliver most data packets without
congestion problems, which is verified by the high PDR in
Figs. 15(a) and 15(b). Compared to LOADng that shows
the worst duty cycle and PDR performance (see queue loss
in Table VII) due to too much control traffic, MobiRPL
provides a reasonable trade-off between control traffic and
PDR performance.

We have observed that when a mobile node goes far away
from the root node, it can be an attractive parent candidate
even for static nodes since it has a smaller Rank compared to

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 381

RPL MobiRPL LOADng
0

20

40

60

80

100
P

D
R

 (
%

)

(a) PDR (mobile node)

RPL MobiRPL LOADng
0

20

40

60

80

100

P
D

R
 (

%
)

(b) PDR (static node)

RPL MobiRPL LOADng
0

10

20

30

40

D
u
ty

 c
y
c
le

 (
%

)

(c) Duty cycle (mobile node)

RPL MobiRPL LOADng
0

10

20

30

40

D
u
ty

 c
y
c
le

 (
%

)

(d) Duty cycle (static node)

Fig. 15. Performance of MobiRPL compared to RPL and LOADng on a real world mobility-augmented testbed (Fig. 9).

TABLE VII
PERFORMANCE OF MobiRPL COMPARED TO RPL AND LOADNG.

Protocol Node type PDR
(%)

Duty cycle
(%)

Routing overhead
(routing pkts /min /node)

Parent change
(parent change /min /node)

Queue loss
(queue loss /min /node)

RPL Static node 98.63 3.47 0.64 0.03 0.00
Mobile node 84.75 3.94 1.52 0.17 0.00

MobiRPL Static node 98.06 5.58 13.07 0.51 0.01
Mobile node 94.36 8.28 29.83 2.96 1.41

LOADng Static node 22.01 23.88 146.71 - 21.17
Mobile node 11.92 31.07 180.96 - 96.60

the nodes it will meet. If parent selection relies only on Rank,
even static nodes will handover to mobile nodes. However,
our RHOF chooses preferred parents by considering the pri-
ority derived from RSSI and mobility with Rank. Therefore,
MobiRPL successfully prevents mobile nodes from becoming
preferred parents of static nodes.

VII. DISCUSSION

There were three considerations for the design of MobiRPL:
(1) It should operate in non-hybrid mobile LLNs, (2) it should
operate with minimal assumptions and external mechanisms,
and (3) it should operate proactively. While satisfying these
three considerations, MobiRPL shows improved performance
over RPL and LOADng, even at a speed of 2 m/s (similar
to human movement), even when duty cycling is applied.
However, MobiRPL did not completely solve all the problems
with mobile LLNs. MobiRPL can perform better if some
assumptions or external mechanisms are applied. For example,
if an external localization method can accurately detect mo-
bility, MobiRPL would be able to make more correct routing
decisions.

Considering the proactive nature of MobiRPL, a slight
deterioration in the accuracy of routing decisions is inevitable.
For example, MobiRPL’s connectivity management mecha-
nism can misclassify connectable parents as disconnected due
to the aggressive timeout. However, the proactive discovery
mechanism in MobiRPL can find new parent nodes before all
parent nodes are blacklisted. As such, MobiRPL overcomes
the inaccuracy of proactive routing through the cooperation
between its mechanisms. At the same time, parameter settings
are important in MobiRPL. Although we provide some guide-
lines to choose appropriate parameters, additional parameter
tuning considering operation environments will be required
for better energy efficiency.

Despite these limitations, we have shown that MobiRPL
improves the performance of mobile LLNs as a stand-alone

proactive routing protocol. The results from Cooja-2 and
Cooja-3 demonstrate that MobiRPL operates effectively even
in complicated situations. Besides, the results support our
intuition that allowing mobile nodes’ routing participation is
helpful for mobile nodes to deliver more packets. According
to the results from the testbed, we confirmed the capability of
MobiRPL to cope well with network dynamics. Therefore, we
believe that MobiRPL will perform well, even in large-sized
random mobile LLNs. In addition, for mobile LLN routing
protocols that require some assumptions and mechanisms,
MobiRPL may provide basic connectivity as long as the
requirements are satisfied.

As future work, we plan to investigate how to find the
best MobiRPL parameter values according to the environment.
We also plan to apply the state-of-the-art link layer protocol
instead of the currently used ContikiMAC. We are considering
time-slotted channel hopping (TSCH) [57] to test how TDMA
link layer protocol affects the performance of MobiRPL.
While resource allocation methods [58], [59] for TSCH pro-
tocols considering mobility have been proposed, combining
TSCH with mobile routing protocols requires further research.
Maintaining synchronization would be a challenge, but the
application of TDMA link layer protocol would help lower
contention and improve the performance of MobiRPL.

VIII. CONCLUSIONS

In this paper, we investigated the routing issues of mobile
LLNs. In particular, we designed a routing protocol that
operates well in a general mobile LLN, which uses duty
cycling and has static and mobile nodes. In this scenario,
we examined the performance of two representative routing
protocols: RPL and LOADng, through experiments using an
indoor testbed and Cooja simulator. As a result, we found
that LOADng suffers severe performance degradation as the
number of transmitting nodes increases due to its reactive

382 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

operation. On the other hand, we found that RPL does not
experience such a performance deterioration because of its
proactive characteristics.

Through extensive experiments, we showed the reasons why
RPL cannot support node mobility. Aiming to support node
mobility while maintaining RPL’s proactive characteristics in
mobile LLNs, we designed a more general routing protocol
named MobiRPL. MobiRPL includes three new mechanisms:
Mobility detection, connectivity management, and RSSI and
hop distance-based objective function. We implemented Mo-
biRPL on Contiki OS and evaluated its performance through
simulation and testbed evaluation. According to the evaluation
results, we confirm that MobiRPL outperforms RPL in relia-
bility and LOADng in energy efficiency. Our MobiRPL can be
applied for more general and various mobile LLNs.

REFERENCES

[1] T. Winter, “RPL: IPv6 routing protocol for low-power and lossy net-
works,” Internet Eng. Task Force, RFC 6550, Mar. 2012.

[2] H.-S. Kim, J. Ko, D. E. Culler, and J. Paek, “Challenging the IPv6
routing protocol for low-power and lossy networks (RPL): A survey,”
IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2502–2525, 2017.

[3] H.-S. Kim, H. Kim, J. Paek, and S. Bahk, “Load balancing under heavy
traffic in RPL routing protocol for low power and lossy networks,” IEEE
Trans. Mobile Comput., vol. 16, no. 4, pp. 964–979, 2016.

[4] H.-S. Kim, H. Cho, M.-S. Lee, J. Paek, J. Ko, and S. Bahk, “MarketNet:
An asymmetric transmission power-based wireless system for managing
e-Price tags in markets,” in Proc. ACM SenSys, 2015.

[5] M. Dohler, T. Watteyne, T. Winter, and D. Barthel, “Routing require-
ments for urban low-power and lossy networks,” Internet Eng. Task
Force, RFC 5548, May 2009.

[6] K. Pister, P. Thubert, S. Dwars, and T. Phinney, “Industrial routing
requirements in low-power and lossy networks,” Internet Eng. Task
Force, RFC 5673, Oct. 2009.

[7] A. Brandt, J. Buron, and G. Porcu, “Home automation routing require-
ments in low-power and lossy networks,” Internet Eng. Task Force, RFC
5826, Apr. 2010.

[8] J. Martocci, P. D. Mil, N. Riou, and W. Vermeylen, “Building automation
routing requirements in low-power and lossy networks,” Internet Eng.
Task Force, RFC 5867, June 2010.

[9] J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh,
“Wireless sensor networks for healthcare,” Proc. IEEE, vol. 98, no. 11,
pp. 1947–1960, 2010.

[10] M. Barcelo, A. Correa, J. L. Vicario, A. Morell, and X. Vilajosana,
“Addressing mobility in RPL with position assisted metrics,” IEEE
Sensors J., vol. 16, no. 7, pp. 2151–2161, 2015.

[11] C. Cobârzan, J. Montavont, and T. Noel, “Integrating mobility in RPL,”
in Proc. EWSN, 2015.

[12] J. Park, K.-H. Kim, and K. Kim, “An algorithm for timely transmission
of solicitation messages in RPL for energy-efficient node mobility,”
Sensors, vol. 17, no. 4, p. 899, 2017.

[13] S. Hoghooghi and R. N. Esfahani, “Mobility-aware parent selection for
routing protocol in wireless sensor networks using RPL,” in Proc. IEEE
ICWR, 2019.

[14] M. Bouaziz, A. Rachedi, A. Belghith, M. Berbineau, and S. Al-Ahmadi,
“EMA-RPL: Energy and mobility aware routing for the Internet of
mobile things,” Future Gener. Comput. Syst., vol. 97, pp. 247–258, 2019.

[15] M. Bouaziz, A. Rachedi, and A. Belghith, “EKF-MRPL: Advanced mo-
bility support routing protocol for Internet of mobile things: Movement
prediction approach,” Future Gener. Comput. Syst., vol. 93, pp. 822–832,
2019.

[16] G. Violettas, S. Petridou, and L. Mamatas, “Evolutionary software
defined networking-inspired routing control strategies for the Internet
of things,” IEEE Access, vol. 7, pp. 132 173–132 192, 2019.

[17] I. Rabet et al., “Pushing IoT mobility management to the edge: Granting
RPL accurate localization and routing,” in Proc. IEEE WF-IoT, 2021.

[18] R. Elhabyan, W. Shi, and M. St-Hilaire, “Coverage protocols for wireless
sensor networks: Review and future directions,” J. Commun. Netw.,
vol. 21, no. 1, pp. 45–60, 2019.

[19] C. Zhu, C. Zheng, L. Shu, and G. Han, “A survey on coverage and
connectivity issues in wireless sensor networks,” J. Netw. Comput.
Applicat., vol. 35, no. 2, pp. 619–632, 2012.

[20] I. El Korbi, M. B. Brahim, C. Adjih, and L. A. Saidane, “Mobility
enhanced RPL for wireless sensor networks,” in Proc. IEEE NOF, 2012.

[21] H. Fotouhi, D. Moreira, and M. Alves, “mRPL: Boosting mobility in
the Internet of things,” Ad Hoc Networks, vol. 26, pp. 17–35, 2015.

[22] H. Fotouhi, D. Moreira, M. Alves, and P. M. Yomsi, “mRPL+: A mo-
bility management framework in RPL/6LoWPAN,” vol. 104. Elsevier,
2017, pp. 34–54.

[23] J. Ko and M. Chang, “MoMoRo: Providing mobility support for low-
power wireless applications,” IEEE Syst. J., vol. 9, no. 2, pp. 585–594,
2015.

[24] O. Gaddour, A. Koubâa, and M. Abid, “Quality-of-service aware routing
for static and mobile IPv6-based low-power and lossy sensor networks
using RPL,” Ad Hoc Networks, vol. 33, pp. 233–256, 2015.

[25] J. Wang, G. Chalhoub, and M. Misson, “Mobility support enhancement
for RPL,” in Proc. IEEE PEMWN, 2017.

[26] H. Kharrufa, H. Al-Kashoash, and A. H. Kemp, “A game theoretic
optimization of RPL for mobile Internet of things applications,” IEEE
Sensors J., vol. 18, no. 6, pp. 2520–2530, 2018.

[27] A. Mohammadsalehi et al., “ARMOR: A reliable and mobility-aware
RPL for mobile Internet of things infrastructures,” IEEE Internet Things
J., vol. 9, no. 2, pp. 1503–1516, 2021.

[28] T. Clausen et al., “The lightweight on-demand Ad hoc distance-vector
routing protocol - Next generation (LOADng),” Internet Eng. Task Force,
Draft, 2016.

[29] M. Vučinić, B. Tourancheau, and A. Duda, “Performance comparison of
the RPL and LOADng routing protocols in a home automation scenario,”
in Proc. IEEE WCNC, 2013.

[30] U. Herberg and T. Clausen, “A comparative performance study of the
routing protocols LOAD and RPL with bi-directional traffic in low-
power and lossy networks (LLN),” in Proc. ACM MSWiM, 2011.

[31] S. Elyengui, R. Bouhouchi, and T. Ezzedine, “A comparative perfor-
mance study of the routing protocols RPL, LOADng and LOADng-CTP
with bidirectional traffic for AMI scenario,” in Proc. IEEE ICSGCE,
2015.

[32] J. Yi, T. Clausen, and Y. Igarashi, “Evaluation of routing protocol for low
power and lossy networks: LOADng and RPL,” in Proc. IEEE ICWISE,
2013.

[33] J. Tripathi and J. C. de Oliveira, “Proactive versus reactive revisited:
IPv6 routing for low power lossy networks,” in Proc. IEEE CISS, 2013.

[34] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with COOJA,” in Proc. IEEE LCN,
2006.

[35] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (AODV) routing,”Internet Eng. Task Force, RFC 3561, 2003.

[36] P. Levis and T. H. Clausen, “The trickle algorithm,” Internet Eng. Task
Force, RFC 6206, Mar. 2011.

[37] O. Gnawali, “The minimum rank with hysteresis objective function,”
Internet Eng. Task Force, RFC 6719, Sep. 2012.

[38] A. Oliveira and T. Vazão, “Low-power and lossy networks under
mobility: A survey,” Comput. Netw., vol. 107, pp. 339–352, 2016.

[39] P. O. Kamgueu, E. Nataf, and T. D. Ndie, “Survey on RPL enhance-
ments: A focus on topology, security and mobility,” Comput. Commun.,
vol. 120, pp. 10–21, 2018.

[40] Z. Shah, A. Levula, K. Khurshid, J. Ahmed, I. Ullah, and S. Singh,
“Routing protocols for mobile Internet of things (IoT): A survey on
challenges and solutions,” Electronics, vol. 10, no. 19, p. 2320, 2021.

[41] K. Levis et al., “RSSI is under appreciated,” in Proc. EmNets, 2006.
[42] S. Lin et al., “ATPC: Adaptive transmission power control for wireless

sensor networks,” ACM Trans. Sensor Netw., vol. 12, no. 1, p. 6, 2016.
[43] E. M. Royer et al., “A review of current routing protocols for ad hoc

mobile wireless networks.” IEEE Personal Commun., vol. 6, no. 2,
pp. 46–55, 1999.

[44] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers,” ACM SIG-
COMM Comput. Commun. Review, vol. 24, no. 4, pp. 234–244, 1994.

[45] T. Clausen and P. Jacquet, “Optimized link state routing protocol
(OLSR),” Tech. Rep. 2003.

[46] D. Johnson, Y.-c. Hu, and D. Maltz, “The dynamic source routing
protocol (DSR) for mobile Ad Hoc networks for IPv4,” Tech. Rep. 2007.

[47] J. Tripathi, J. C. De Oliveira, and J.-P. Vasseur, “Proactive versus reactive
routing in low power and lossy networks: Performance analysis and
scalability improvements,” Ad Hoc Netw., vol. 23, pp. 121–144, 2014.

[48] T. Clausen, J. Yi, and A. C. De Verdiere, “LOADng: Towards AODV
version 2,” in Proc. IEEE VTC Fall, 2012.

KIM et al.: MOBIRPL: ADAPTIVE, ROBUST, AND RSSI-BASED MOBILE ... 383

[49] T. Clausen, J. Yi, and U. Herberg, “Lightweight on-demand Ad hoc
distance-vector routing-next generation (LOADng): Protocol, extension,
and applicability,” Comput. Netw., vol. 126, pp. 125–140, 2017.

[50] J. Yi and T. Clausen, “Collection tree extension of reactive routing
protocol for low-power and lossy networks,” Int. J. Distributed Sensor
Netw., vol. 10, no. 3, p. 352421, 2014.

[51] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proc. IEEE
LCN, 2004.

[52] A. Dunkels, “The Contikimac radio duty cycling protocol,” 2011.
[53] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study of

low-power wireless,” ACM Trans. Sensor Netw., vol. 6, no. 2, pp. 1–49,
2010.

[54] H.-S. Kim, S. Kumar, and D. E. Culler, “Thread/OpenThread: A
compromise in low-power wireless multihop network architecture for
the Internet of things,” IEEE Commun. Mag., vol. 57, no. 7, pp. 55–61,
2019.

[55] S. Jeong, E. Park, D. Woo, H.-S. Kim, J. Paek, and S. Bahk, “MAPLE:
Mobility support using asymmetric transmit power in low-power and
lossy networks,” J. Commun. Netw., vol. 20, no. 4, pp. 414–424, 2018.

[56] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” Mobile computing, 1996.

[57] “IEEE standard for local and metropolitan area networks–Part 15.4:
Low-rate wireless personal area networks (LR-WPANs) amendment 1:
MAC sublayer,” IEEE Std 802.15.4e-2012 (Amendment to IEEE Std
802.15.4-2011), pp. 1–225, 2012.

[58] A. Elsts, J. Pope, X. Fafoutis, R. J. Piechocki, and G. Oikonomou,
“Instant: A TSCH schedule for data collection from mobile nodes,” in
EWSN, 2019, pp. 35–46.

[59] O. Tavallaie, J. Taheri, and A. Y. Zomaya, “Design and optimization of
traffic-aware TSCH scheduling for mobile 6TiSCH networks,” in Proc.
ACM/IEEE IoTDI, 2021.

Hongchan Kim (Student Member, IEEE) received
the B.S. degree in Electrical Engineering from Seoul
National University, in 2015. He is currently pursu-
ing the Ph.D. degree with the School of Electrical
and Computer Engineering, Seoul National Univer-
sity, Seoul, South Korea. His research interests in-
clude designing routing protocols for low-power net-
works and constructing the mobile IoT systems. He
received the National Research Foundation (NRF)
Global Ph.D. Fellowship, in 2016.

Hyung-sin Kim (Member, IEEE) received the B.S.
degree in Electrical Engineering and the M.S. and
Ph.D. degrees in Electrical Engineering and Com-
puter Science (EECS) from Seoul National Uni-
versity (SNU), Seoul, South Korea, in 2009, 2011,
and 2016, respectively, all with outstanding thesis
awards. He was a Postdoctoral Scholar at Network
Laboratory (NETLAB), SNU, until August 2016 and
Real-time, Intelligent, Secure, Explainable systems
(RISELab), University of California, Berkeley, until
August 2019, and a Software Engineer at Google

Nest until February 2020. He received the Qualcomm Fellowship in 2011
and the National Research Foundation (NRF) Global Ph.D. Fellowship and
Postdoctoral Fellowship in 2011 and 2016, respectively. He is currently an
Assistant Professor at Graduate School of Data Science, SNU. His research
interest includes Internet of Things and ambient artificial intelligence.

Saewoong Bahk (Senior Member, IEEE) received
the B.S. and M.S. degrees in Electrical Engineering
from Seoul National University (SNU), in 1984 and
1986, respectively, and the Ph.D. degree from the
University of Pennsylvania, in 1991. He was with
AT&T Bell Laboratories as a Member of Technical
Staff from 1991 to 1994, where he had worked
on Network Management. From 2009 to 2011, he
served as Director of the Institute of New Media
and Communications. He is currently a Professor at
SNU. He has been leading many industrial projects

on 5G/6G and IoT connectivity supported by Korean industry. He has
published more than 300 technical articles and holds more than 100 patents.
He is a member of the National Academy of Engineering of Korea (NAEK).
He was a Recipient of the KICS Haedong Scholar Award, in 2012. He was
President of the Korean Institute of Communications and Information Sciences
(KICS) in 2020. He served as Chief Information Officer (CIO) of SNU
from 2016 through 2021. He was General Chair of the IEEE WCNC 2020
(Wireless Communication and Networking Conference), IEEE ICCE 2020
(International Conference on Communications and Electronics), and IEEE
DySPAN 2018 (Dynamic Spectrum Access and Networks). He was Director
of the Asia–Pacific Region of the IEEE ComSoc. He is an Editor of the IEEE
Network Magazine and IEEE Transactions on Vehicular Technology. He was
TPC Chair of the IEEE VTC-Spring 2014, and General Chair of JCCI 2015,
Co-Editor-in-Chief of the Journal of Communications and Networks (JCN),
and on the Editorial Board of Computer Networks Journal and the IEEE Tran.
on Wireless Communications.

