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Linear–Quadratic Detectors for Spectrum Sensing
Ezio Biglieri and Marco Lops

Abstract: Spectrum sensing for cognitive-radio applications may
use a matched-filter detector (in the presence of full knowledge of
the signal that may be transmitted by the primary user) or an en-
ergy detector (when that knowledge is missing). An intermediate
situation occurs when the primary signal is imperfectly known, in
which case we advocate the use of a linear–quadratic detector. We
show how this detector can be designed by maximizing its deflec-
tion, and, using moment-bound theory, we examine its robustness
to the variations of the actual probability distribution of the inac-
curately known primary signal.

Index Terms: Cognitive radio, linear-quadratic (LQ) detectors,
spectrum sensing.

I. INTRODUCTION AND MOTIVATION OF THE
WORK

Spectrum sensing, one of the major functions of interweaved
cognitive radio [4], detects and classifiesspectrum holes, i.e.,
regions of the spectrum space that can be opportunisticallyused
by secondary users. The signal observed by the spectrum sensor
has the vector form

y = ǫx + n (1)

wherex is the primary-user signal,n the noise, andǫ takes
on value1 if a primary signal is included in the observation,
and0 otherwise. The vectors in (1) haveN real components,
corresponding to discrete signal samples (in our context,N
is also calledsensing time”). By indicating with the notation
g ∼ N(m,R) the fact that the random vectorg has a Gaussian
probability density function with meanm and covariance matrix
R, a standard assumption for (1) isn ∼ N(0,Rn) (where the
covarianceRn is assumed to have full rank).

A spectrum sensor decides between the two hypothesesH0 :
ǫ = 0 andH1 : ǫ = 1. Decision is made by comparing the
statisticY , a suitable function of the observed signal, against a
thresholdθ. The two probabilities of interest here are the false-
alarm and detection probabilities, whose definitions are

PFA , P{Y > θ | H0}, (2)

PD , P{Y > θ | H1}. (3)

The choice of the statisticY depends on how much informa-
tion aboutx andn is available to the detector, and on the toler-
able complexity of the calculations entailed in the decision pro-
cess. Two common choices ofY refer to situations in whichx
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has a structure which is perfectly known (coherent, or matched-
filter linear detector) or totally unknown (energy quadratic de-
tector) [4]. The situation we examine in this paper is interme-
diate between those two: Here, assuming thatx is incompletely
known, we use a detector which has the matched-filter and the
energy one as special cases: thelinear–quadratic(LQ) detec-
tor. Its performance approaches that of the linear detectorwhen
the uncertainty on the primary signal is small, and that of the
quadratic detector in the opposite case. To illustrate our find-
ings, we use a simple model for the uncertainty, assuming that
x is the sum of a perfectly known signals and a disturbance
i whose probability distribution is only known within an “un-
certainty set,” which includes distributions whose first moments
are known, reflecting a common approach to partial statistical
modeling through moments. (This model can be viewed as a
variation on the theme of the one proposed in [23], in which
availability of side information on the minimum primary-signal
strength is also assumed. See also [21].) A way of describingthe
philosophy underlying our approach is by observing the differ-
ence betweendecision making under risk, which occurs when
a perfect statistical model of the observation is availableand
decision making under ignorance, which occurs when there is
uncertainty on the model to be used.

To choose the detector parameters under the assumed uncer-
tainty of the model (which does not allow the “natural” choice
of using forY the likelihood ratio) we maximize a generalized
signal-to-noise ratio (SNR), calleddeflection. Next, we examine
how this detector performs under several scenarios, and discuss
its robustness to the variation of the actual probability distribu-
tion of the unknown signal. The results described in this paper
are related to the “robust decision design” problem (e.g., [17]
and references therein), which we approach by assuming a spe-
cific structure for the receiver and examining its robustness to
probability distributions differing from the Gaussian one. In
fact, when the distribution of signal and/or noise is unknown,
likelihood ratio cannot be used for optimum detection. If this is
the case, it seems a reasonable solution to assume a fixed form
for the detection statistic and optimize its performance. The ra-
tionale behind this choice will be discussed in the following.

Robustness is evaluated here by deriving sharp upper and
lower bounds to the performance of the detector as the probabil-
ity distribution of i ranges through the uncertainty set. Among
other information, robustness analysis provides the designer
with a tool yielding the conditions under which unsatisfactory
performance is due to model uncertainty rather than to noiseef-
fects (other examples of this situation are examined, in different
contexts, in [10] and [20]).

II. LINEAR AND LINEAR–QUADRATIC SENSING

A general expansion of the functional which maps the obser-
vationsy1, · · ·, yN to the statisticY can be obtained in the form
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of a Volterra expansion [3] and [16]:

Y = S(y1, y2, · · ·, yN )

= w(0) +
∑

i

w
(1)
i yi +

∑

i

∑

j

w
(2)
ij yiyj

+
∑

i

∑

j

∑

k

w
(3)
ijkyiyjyk + · · ·. (4)

One may choose the “Volterra coefficients”w(0), w
(1)
i , etc.,

which maximize a suitable cost function, as thedeflectionto
be described below. The use of a Volterra expansion typically
allows one to express the optimum statistic in terms of the mo-
ments of the random variablesy1, · · ·, yN . In particular, one may
choose the order of the Volterra expansion (4) so that only the
known moments ofy1, · · ·, yN are involved. Now, it seldom
occurs that many moments are available with sufficient accu-
racy. Thus, a reasonable approach to this situation of uncertainty
would be toassumea given structure for the moments (typi-
cally, a Gaussian structure in which all moments can be com-
puted from first- and second-order moments), and evaluate the
performance when the observed samples are actually not Gaus-
sian. This is the approach we take in the following, where for
simplicity we focus our attention on a second-order expansion.

Coherent sensing is the most natural spectrum sensing tech-
nique under the assumption that the primary signalx is perfectly
known to the detector. The corresponding decision statistic Y is
built as a linear function of the observed vectory:

YL = wT R−1
n y. (5)

Assume instead that no prior knowledge ofx is available. In
this case hypothesis testing becomes a composite problem, and
a computable decision statistic can be obtained through thegen-
eralized likelihood-ratio test (GLRT), viz.,

YGLRT = max
x∈RN

fy|H1,x(y | H1, x)

fy|H0
(y | H0)

= max
x∈RN

fn(y − x)
fn(y)

with f denoting probability density functions. This leads to the
quadratic test statistic

YQ = yT R−1
n y. (6)

In particular, when the primary signal structure is totallyun-
known andn is white, one may use asY the measure of the
energy contents of the observed signal, which yields

YQ = ‖y‖2. (7)

The more general statistic we advocate here, where only par-
tial knowledge ofx is assumed, encompasses (5) and (7) as spe-
cial cases, and consists of a LQ functionYLQ of y. This may be
thought of as obtained by truncating to the second-order term the
Volterra-series expansion of a generic nonlinear decisionfunc-
tional ofy.1 It has the form

YLQ = c+ wT y + yT Wy (8)

1Gardner [8] discusses the concept ofstructurally constrained receivers,
which are based on a combination of a simple ad hoc procedure with an op-
timization procedure, and yield the best performance for some classes of prob-
lems.

wherec is a constant (whose value is irrelevant to the detector
performance), and the superscriptT denotes transposition. The
“optimum” valueswo and Wo of the two relevant parameters
in (8), the vectorw and the matrixW, may be chosen as those
maximizing a generalized SNR known asdeflection2

D ,
[E(y | H1)− E(y | H0)]

2

V(y | H0)
(9)

whereE denotes expectation, andV denotes variance.
The solution to this problem is illustrated in [15] and, for the

complex case, in [5]. It requires knowledge of the fourth-order
statistics of the random variables involved, which we do not
assume to be available forx (more generally, one could use a
truncated version of a Volterra series including terms beyond
second-order, which would need exact knowledge of higher-
order moments for the optimization of its parameters [16].)
We search instead for a solution assuming only knowledge of
second-order statistics. This can be obtained by assuming a
Gaussian distribution forx, or, more generally, a “Gaussian-
like” distribution, characterized by zero third-order moments
and a relation between second-order and fourth-order moments
typical of Gaussian distributions (see [15] for details. Ref-
erence [8] shows an example of a Gaussian-like, but non-
Gaussian, probability density function. Observe also thathav-
ing null thrid-order moments uncouples the equations yielding
the optimum linear and quadratic parts, so that the optimum LQ
detector is obtained by using independently calculated optimal
linear and quadratic systems [15]). The resulting solutionhas a
closed form. Specifically, assuming that

x ∼ N(s,Ri) (10)

which corresponds to havingx = s + i, with s a known deter-
ministic signal andi a Gaussian disturbance, we have [15] and
[19]

wo = R−1
n s, (11)

Wo = R−1
n RiR

−1
n (12)

and hence

YLQ = sT R−1
n y + yT R−1

n RiR
−1
n y. (13)

Denoting by0 andO the null vector and the null matrix, respec-
tively, we can see from (11)–(13) that
(a) wo corresponds to the whitened matched filter.
(b) If i = 0 (corresponding to a deterministic primary signal),

thenRi = O, and hence the optimum statisticY is linear.
(c) If s = 0 (corresponding to a zero-mean Gaussian primary

signal), then the optimum statistic is quadratic, which yields
the energy-detector statisticYQ whenn andi are white.

2Also called “detection index” [6] or “output SNR” [11]. The most sensible
optimization criterion would be to optimize the receiver operating characteris-
tics, which appears to be a formidable task. The rationale behind the choice of
the deflection as a cost function for the optimization of the LQ detector offering
both tractability and pratical utility is discussed in [14](see also [1]). Other pos-
sible second-order cost functions related to deflection arecategorized in [9] and
[19]. Baker [2] derives relations between the optimum deflection criterion test
statistics and the log-likelihood ratio. In [1], the deflection is optimized for a
purely quadratic statistic, viz.,YQ = yT Wy, with results consistent with those
presented here.
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(d) The “full” LQ statistic is optimum only ifs 6= 0 andRi 6=
O.

Defining the vectoru , R−1
n y, completing the square in (13),

and removing an irrelevant additive constant, we may write the
LQ statistic in the new form3

YLQ =

∥

∥

∥

∥

1

2
R−1/2
i s + R1/2

i R−1
n y

∥

∥

∥

∥

2

. (14)

In the special case of whiten and i, viz., Rn = σ2
ni and

Ri = σ2
i i with σ2

i > 0, the LQ statistic assumes the exceed-
ingly simple form

YLQ = ‖γ2s + y‖2 (15)

where

γ2 , σ2
n/2σ

2
i . (16)

This parameter quantifies in a way the amount of uncertainty
on the distribution ofi by comparing the variance of the noise
against that ofi: Large values ofγ2 indicate small uncertainty,
and hence suggest the use of a coherent detector, while a small
γ2 would naturally lead to the energy detector, as immediately
reflected by the structure of (13). We may also observe the ex-
pression of the resulting maximum deflection, which yields

Dmax =
‖x‖2
σ2
n

+
σ2
i

σ2
n

‖x‖2
σ2
n

(17)

=

(

1 +
1

2γ2

) ‖x‖2
σ2
n

(18)

and shows the two separate contributions of the linear and
quadratic part of the detector.

Since the derivation of (11) and (12) was made under the as-
sumption of Gaussian-like distribution fori, which might not be
valid in practice, the LQ-detector must be scrutinized to examine
its behavior with distributions differing from the one assumed.
Thus, after examining its “optimum” behavior, we shall proceed
to derive upper and lower bounds to its performance when the
distribution of i ranges in an uncertainty set, as defined by the
partial knowledge of the distribution itself.

III. PERFORMANCE OF LQ DETECTOR WITH
GAUSSIAN-LIKE DISTRIBUTION

From now on, and purely for simplicity’s sake, we pursue
our analysis referring only to the case corresponding to (15).
The performance of the decision statistic is now evaluated by
computing

PFA−LQ = P

[

∥

∥γ2s + n
∥

∥

2
> θ
]

(19)

= QN/2

(

√

λ0,
√

θ/σ2
n

)

, (20)

3With a notational abuse that should not lead to ambiguities,we denote by the
same symbol two equivalent statistics, i.e., statistics leading to the same detector
performance—for example, obtained by adding or multiplying by a constant
term.

PD−LQ = P

[

∥

∥(1 + γ2)s + i + n
∥

∥

2
> θ
]

(21)

= QN/2

(

√

λ1,
√

θ/(σ2
i + σ2

n)

)

(22)

whereQ·(·, ·) denotes the generalized Marcum Q-function

Qm(a, b) ,
1

am−1

∫ ∞

b

xm exp

(

−x2 + a2

2

)

Im−1(ax) dx

(23)
(Iν( · ) is the modified Bessel function of the first kind and order
ν) and

λ0 ,
γ4

σ2
n

‖s‖2, (24a)

λ1 ,
(1 + γ2)2

σ2
i + σ2

n

‖s‖2. (24b)

We compare the performance of the LQ detector to that of the
linear4 detector, which has

PFA−L = P
[

sT n > θ
]

= Q

(

θ
√

‖s‖2σ2
n

)

, (25)

PD−L=P
[

sT (s + i + n) > θ
]

=Q

(

θ − ‖s‖2
√

‖s‖2(σ2
i + σ2

n)

)

(26)
whereQ(·) denotes the Gaussian tail function.

Figs. 1 and 2 illustrate the improvement over the linear de-
tector obtained by using a LQ statistic with a Gaussiani. The
calculations leading to these figures assumed a primary signal
s = 1, where1 denotes the all-1 N -vector. It is seen that the
improvement obtained depends on the value ofγ2: A smallγ2,
corresponding to a relatively high energy in the partially known
componenti, makes the statistic (15) close toYQ, which justi-
fies the improvement on the linear detector. Conversely, a large
value ofγ2, corresponding to a small amount of uncertainty in
modelingy, makes the improvement introduced by the quadratic
term marginal, as expected.

A. Sample Complexity

We now examine, following [20], how the sensing timeN
depends on the SNR and onγ2 for a given performance level.
Assuming thatPFA andPD can be given the form

PFA = Q

(√
N

θ −A√
B

)

, (27)

PD = Q

(√
N

θ − C√
D

)

(28)

and eliminatingθ from (27) and (28), we obtain

N = (C −A)−2
[√

BQ−1(PFA)−
√
DQ−1(PD)

]2

. (29)

With the LQ detector, assume a Gaussiani and s = s1, so
thatSNR , s2/σ2

n. We observe that

E ‖γ2s + n‖2 = Nσ2
n(γ

4SNR + 1), (30)

V ‖γ2s + n‖2 = Nσ4
n(4γ

4SNR + 2) (31)

4A comparison with the quadratic detector would be unfair, since its use does
not assume any information on the primary signal structure.
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Fig. 1. Receiver operating characteristics of linear (L) and LQ statistic
with Gaussian i , N = 10, s = 1, σ2

n = 1, and σ2
i
= 2.5 (and hence

γ2 = 0.2).

Fig. 2. Receiver operating characteristics of linear (L) and LQ statistic
with with Gaussian i , N = 10, s = 1, σ2

n = 10, and σ2
i
= 2.5 (and

hence γ2 = 2).

and

E ‖(1 + γ)2s + i + n‖2

= Nσ2
n[(1 + γ2)2SNR + 1 + 1/2γ2], (32)

V ‖(1 + γ)2s + i + n‖2

= Nσ4
n[4(1 + γ2)2(1 + 1/2γ2)SNR + 2(1 + 1/4γ4)]. (33)

Assuming thatN is large enough to justify a Gaussian approx-
imation for‖γ2s + n‖2 and‖(1 + γ)2s + i + n‖2, we may ap-
proximatePFA−LQ andPD−LQ in the form (27), (28), where

A = γ4SNR + 1, (34a)

B = 4γ4SNR + 2, (34b)

C = (1 + γ2)2SNR+ 1 + 1/2γ2, (34c)

D = 4(1 + γ2)2(1 + 1/2γ2)SNR + 2(1 + 1/4γ4) (34d)

SNR

N

Fig. 3. Sample size N vs. the SNR(, s2/σ2
n) for the linear and LQ

detector with s = s1, two different values of γ2, and PFA = 1−PD =
0.01.

and hence

N ≈
[

(1 + 2γ2)SNR + 1/2γ2
]−2

[

√

4γ2SNR + 2Q−1(PFA−LQ)

−
√

4(1+γ2)(1+1/2γ2)SNR+2(1+1/4γ4)Q−1(PD−LQ)
]2

.

(35)

It is observed that the first factor in the RHS of the above equa-
tion is roughly constant for smallSNR, while varies asSNR−2

for large values ofSNR, while the second factor increases as
SNR. Thus, for very lowSNR the value ofN remains about
constant withSNR, while it decreases asSNR−1 for largerSNR
(notice also that for relatively large values ofSNR the accuracy
of (35) is questionable, as the Gaussian approximation leading
to it may not be valid).

The linear detector has

A = 0, (36a)

B = s2σ2
n, (36b)

C = s2, (36c)

D = s2(σ2
i + σ2

n) (36d)

and hence

N = SNR−2
[

Q−1(PFA−L)−
√

1 + 1/2γ2Q−1(PD−L)
]2

,

(37)
so that, for a given target pairPFA−L, PD−L, N varies as
SNR−2.

Fig. 3 shows the behavior ofN as a function ofSNR for the
linear and LQ detector.

B. Robustness of LQ Detector: A First Stab

The analysis carried onsuprawas assuming that, in addition
to i being a Gaussian vector, the varianceσ2

i of its components
were known, so that the value ofγ2 parametrizing the detector
was computed using the exact values ofσ2

n andσ2
i . A more re-

alistic assumption is that the value ofσ2
i is only approximately
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Fig. 4. Probability of misdetection PMD−LQ for a LQ detector with s = 1,
N = 20, σ2

n = 1, and σ̂2
i
= 1/N for different actual values of σ2

i
. The

value of the threshold θ is chosen so that PMD−LQ = PFA−LQ =
0.016.

known through its estimatêσ2
i , so that the detector using an es-

timated value ofγ2 is likely to be mismatched. We now ex-
amine this situation by evaluating the effect onPD−LQ of a
mismatchedσ2

i (the value ofPFA−LQ will not be affected by
the mismatch. For convenience, here we use the probability of
misdetectionPMD−LQ , 1 − PD−LQ). For a fair analysis, we
consider that addingi to s increases its power, so that the proba-
bility of misdetection would be improved by a larger uncertainty
termσ2

i unless the observed signal power is kept constant. This
is done by replacing for‖s‖2 in (24a) and (24b), under the as-
sumptions = si, the termN‖s2 − σ2

i ‖2, whereσ2
i is the actual

value of the variance of the components ofi, which may differ
from the valuêσ2

i estimated and used to determineγ2. Fig. 4
illustrates the effect of such mismatch. In this figure,s = 1,
N = 20, σ2

n = 1, andσ̂2
i = 1/N , so thatγ2 = 10.

IV. INACCURATE MODEL OF I: DETECTOR
ROBUSTNESS

The structure ofYLQ was chosen in Section II under a
Gaussian-like assumption onx and a given value ofγ2. Now,
if the assumption on the statistics ofx is not valid, the LQ detec-
tor is mismatched, and hence its performance may be degraded.
One may examine this performance with a number of different
models forx: for example, Fig. 5 shows the receiver operating
characteristics with uniformly distributedi. We observe that in
this situation the performance of the LQ detector is not degraded
by the mismatch (actually, it is even improved, reflecting the fact
that maximization of the deflection does not necessarily imply
optimization ofPD andPFA).

A more accurate scrutiny of the implications of the model
mismatch leads to the evaluation of the robustness of the LQ
statistics to signal-model variations. To do this, while still ac-
cepting thatx = s + i, with s a known signal, we assume that
a limited knowledge of the distribution ofi is available, for ex-
ample in the form of its range and variance (we also assume that
it has mean zero), and study how the detector performs as that
distribution varies in the uncertainty set defined by those con-
straints. Under these conditions, after observing that theproba-

Fig. 5. Receiver operating characteristics of linear (L) and LQ statistic
with Gaussian (LQ(G)) and uniformly distributed i [LQ(U)—obtained
by computer simulation]. Here N = 10, s = 1, σ2

n = 1, and σ2
i
= 2.5

(and hence γ2 = 0.2).

bility of false alarm does not depend oni, we may write

PD = EIPD(i) (38)

where I denotes the actual distribution ofi, EI expectation with
respect to I, andPD(i) the detection probability conditioned on
i. The extent of variation ofPD as I runs in the uncertainty set
tells us how robust the detector is.

A. Moment Bounds

Our study of the LQ detector robustness consists of finding
sharp upper and lower bounds to (38) as I runs through all the
possible distributions ofi satisfying the set of constraints im-
posed by the physical aspects of the problem. Some of these
constraints take the form of generalized moments ofi (i.e., ex-
pected values of known functions ofi), while others may involve
what is known about the structure of the distribution of I. For-
mally, the problem to be solved is

sup
I

EIPD(i), s.t. EI k(i) = µ

along with its equivalent version withinf in lieu of sup. Here,
I is the subset of all possible probability distributions satisfying
the given constraints.

A simple, yet important special situation occurs whenI is the
unconstrained set of all possible distributions with finitesupport.
In this case, if few generalized moments ofi are exactly known,
or even known within a certain interval, geometric moment-
bound theory (e.g., [7], [12], [13], [25], and references therein)
allows one to obtain sharp upper and lower bounds to the values
of PD. Here we assume the knowledge of range and variance
of i. The geometric moment-bound theory relevant here is sum-
marized by the following fact. LetZ denote a random variable
with range in the finite intervalZ and unknown cumulative dis-
tribution function (CDF). Letk1(z) andk2(z) be two continuous
functions defined overZ. Themoment spaceof Z, denotedM,
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is defined as the (closed, bounded, and convex) set of the pairs
(
∫

Z

k1(z) dG(z),

∫

Z

k2(z) dG(z)

)

(39)

asG(·) runs over all CDFs defined overZ. The main result
we need is the following [12], [25]:M is the convex hull of
the curveC , {(k1(z), k2(z)) | z ∈ Z} in R

2. Explicitly, by
choosingk1(z) = z2 andk2(z) = f(z), the expected value of
f(Z) can be identified with the second coordinate ofM. If the
first coordinate is chosen as the known value ofEZ2, then upper
and lower bounds toE f(X) are obtained by direct evaluation
of the upper and lower envelopes ofM.

B. Robustness of Linear Detector

Consider the linear detector first. We have

PD−L(i) = P[sT n > θ − ‖s‖2 − sT i] (40)

= Q

(

θ − ‖s‖2 − µ(i)
√

‖s‖2σ2
n

)

(41)

whereµ(i) , sT i is a random variable with range(µmin, µmax),
mean zero, and variance‖s‖2σ2

i . Assuming agains = 1 and the
components ofi confined in(−a, a) (so thatσ2

i ∈ (0, a2)), and a
symmetric probability density function forµ(i), the curve whose
convex hull yields sharp upper and lower bounds toPD−L is

CD−L ,
(

z2, f(z) | z2 ∈ (0, Na2)
)

(42)

where

f(z) ,
1

2

[

Q

(

θ −N − z
√

Nσ2
n

)

+Q

(

θ −N + z
√

Nσ2
n

)]

. (43)

C. Robustness of LQ Detector

Consider next the LQ detector. From (21) we obtain

PD−LQ(i) = P[‖u‖2 > θ/σ2
n | i] (44)

whereu , σ2
n‖(1 + γ2)s + i + n‖2/σ2

n has, conditionally oni,
a noncentralχ2 distribution with noncentrality parameter

λ(i) =
1

σ2
n

‖(1 + γ2)s + i‖2. (45)

Consequently,

PD−LQ(i) = QN/2(
√

λ(i),
√

θ/σ2
n). (46)

The random variableλ(i) has, under the the assumption thati
has mean zero, a known mean value

E[λ(i)] =
1

σ2
n

[(1 + γ2)2‖s‖2 +Nσ2
i ]. (47)

The range ofλ(i) (which we assume to be finite) is denoted
(λmin, λmax). For example, ifs = 1 and the components ofi
take values in(−a,+a), with a ≥ 1 + γ2, we have from (45)

λmin = 0, λmax =
N

σ2
n

(1 + γ2 + a)2.

Fig. 6. Moment space of PD−L, N = 10, s = 1, σ2
n = 1, σ2

i
= 4, and

a = 4. The curve PD−L and the boundaries of its convex hull are
shown.

Thus, the upper and lower bounds forPD−LQ at σ2
i ∈ (0, a2)

are given by the values of the upper and lower extremes of the
convex hull of the curve

CD−LQ,

(

z,QN/2

(√
z,
√

θ/σ2
n

)

| z ∈ (λmin, λmax)
)

(48)

corresponding to the abscissaE[λ(i)] = N [(1+ γ2)2 +σ2
i ]/σ

2
n.

D. Comparisons

Fig. 6 shows the moment space of the detection probability
with linear statistic. Increasing the sample sizeN , besides in-
creasingPD−L, yields a narrower moment space. This observa-
tion may be used to determine the sample size, whose choice
influences the performance of the spectrum sensor as well as its
robustness. Robustness analysis provides a tool to decide when
unacceptable detector performance is caused by low SNR, or
rather by an insufficiently accurate model of system parameters.

Figs. 7 and 8 show two moment spaces of the detection prob-
ability with LQ statistic. As for the linear case, increasing the
sample sizeN , besides increasing the detection probability,
yields a narrower moment space. Comparing the moment spaces
of linear and LQ detector, one may observe that, as discussed
above, increasing the power of the interference increases the
probability of detection of the LQ detector, while decreases the
one of the linear detector.

E. A Generalization

We observe here that, while the bounds achieved aresharp,
i.e., they correspond to distributions that are achievableunder
the constraints assigned and hence cannot be further tightened,
the choice of a wide setI might provide loose, and hence pes-
simistic, bounds. For example, in the cases examined above the
extremal distributions turn out to be discrete, which may not
be a realistic model. Thus, one may want to rule out distri-
butions being ill-fitted to the specific problem and hence mak-
ing the moment bounds unreasonably loose. For computational
purposes, it is convenient to restrict the underlying distribution
to belong to aconvexI [18], [22]. This is because a number
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Fig. 7. Moment space of PD−LQ, N = 8, s = 1, σ2
n = 1, σ2

i
= 4, and

a = 1.125. The curve PD−LQ and the boundaries of its convex hull
are shown.

Fig. 8. Same as in Fig. 7, but with N = 12.

of constrained moment bounds characterized by a convex con-
straint setI can be solved as semidefinite programs. Since
the intersection of two convex sets is also convex, these con-
straints can also be combined together. Unimodal, symmetric,
and monotone convex distributions may be considered. In this
framework, the authors of [24] present a semidefinite program-
ming formulation of the problem of deriving bounds to the prob-
ability P[xTAx + 2bT x + c < 0], wherex is ann-dimensional
real random vector with known first and second momentsE x
andE xxT .

V. CONCLUSIONS

We have examined the robustness of a LQ detector for spec-
trum sensing when the primary signal can only be imperfectly
modeled, and hence the detector may be mismatched. The de-
tector was designed by maximizing a generalized SNR. The ro-
bustness of the detector to variations of the signal distribution
was studied using geometric moment-bound theory.
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