Abstract : This work evaluates the secrecy performance for the rate splitting multiple access-aided satellite-aerial-vehicle integrated networks, particularly, non-ideal hardware is further considered at the transmission nodes. To enhance the transmission, rate splitting multiple access scheme is utilized in the considered networks. In addition, multiple unmanned-aerial-vehicles (UAVs) are utilized to help the transmission from the satellite to the vehicle destinations under multiple eavesdroppers. To balance the system performance and complexity, partial selection strategy is applied at the UAVs. Owing to some practical reasons, the direct transmission link is not applied in the considered system. By considering the above the limitations, this paper obtains the exact and asymptotic expressions for the secrecy outage probability to confirm the influences of non-ideal hardware, system parameters and channel parameters on the secrecy performance of the secrecy networks. Moreover, the investigations for the secrecy energy efficiency are also provided in this paper. At last, several representative Monte Carlo simulations are plotted to verify the rightness of the derived results.
Index terms : Satellite-aerial-vehicle integrated networks , rate splitting multiple access , non-ideal hardware , secrecy performance